A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Representação de dados Livro Introdução à Organização de Computadores Capítulo: 7 – Representação de dados.

Apresentações semelhantes


Apresentação em tema: "Representação de dados Livro Introdução à Organização de Computadores Capítulo: 7 – Representação de dados."— Transcrição da apresentação:

1 Representação de dados Livro Introdução à Organização de Computadores Capítulo: 7 – Representação de dados

2 Representação de dados Dados podem ser representados de diversas formas: Texto Numérico Binário Matriz Lógico Outros Algumas não são usadas nos processadores, mas nos compiladores.

3 Representação de dados Entrada: 143 (caracteres 1, 4 e 3, nessa ordem) Compilador transforma no número, ou outra forma que o programa for usar A arquitetura é o limite para a representação dos dados Entrada: Texto Compilador Saída: Dados

4 Representação de dados Tipos de dados Dados podem ser representados de diversas formas: VAR ANOS:INTEGER; VAR ANOS REAL;

5 Representação de dados Soma usando inteiros:

6 Representação de dados Soma usando notação científica: Converter: 1249 = 0,1249 * = 0,3158 * 10 4 Calcular: 011 0, , ,4407 Resultado: 0,4407 * 10 4

7 Representação de dados Representações numéricas: * = Em uma tela pequena: 4,41 E 14 => 4,41 * 10 14

8 Representação de dados Tipos de dados: Caractere Como representar texto quando você só tem 0s e 1s? => Usando tabelas de codificação

9 Representação de dados Exemplos: BCD – Representação de 6 bits EBCDIC – Representação de 8 bits da IBM ASCII – Representação de 7 bits usada em PCs. Posteriormente modificada para 8 bits Unicode – Tabela de 16 bits, em definição por um comitê internacional

10 Representação de dados Dados são usualmente inseridos como texto, e depois convertidos para outros formatos através da compilação. FOR I=0 TO 12 READ NOTA(I) NEXT I Esse texto é convertido em código de máquina e variáveis pelo compilador.

11 Representação de dados Tipo de dados: Lógico Pode assumir os valores verdadeiro (usualmente representado pelo bit 1) ou falso (usualmente representado pelo bit 0).

12 Representação de dados Operadores lógicos: AND (E lógico) A operação lógica E será verdadeira se e somente se todas as variáveis de entrada forem verdadeiras Tabela verdade da operação lógica E (AND) ABX=A AND B ou X=A * B

13 Representação de dados Exemplo: A = 0110 e B=1110 Qual o valor de X = A * B? 0110 and

14 Representação de dados Operadores lógicos: OR (ou lógico) A operação lógica OU será verdadeira se qualquer uma das variáveis de entrada for verdadeira. Tabela verdade da operação lógica OU (OR) ABX=A OR B ou X=A + B

15 Representação de dados Exemplo: A = 0110 e B=1110 Qual o valor de X = A + B? 0110 or

16 Representação de dados Operadores lógicos: NOT (não lógico) A operação lógica NOT é conhecida como inversora ou complemento. Ela inverte o valor de entrada. Tabela verdade da operação lógica NÃO (NOT) A 01 10

17 Representação de dados

18

19 Operadores lógicos: Exclusive OR (Ou exclusivo) A operação lógica XOR será verdadeira se somente uma das variáveis de entrada for verdadeira. Tabela verdade da operação lógica OU exclusivo ABX=A XOR B

20 Representação de dados Tipos de dados: Numérico Três coisas são triviais para nós na hora de representar números, mas são problemas para a implementação de um computador: Sinal de um número (positivo/negativo); Representação da vírgula; Quantidade de algarismos dos números;

21 Representação de dados Representação da vírgula: Ponto fixo Representa o número sempre com exatamente o mesmo número de dígitos antes e depois da vírgula. Posições mais comuns: Vírgula totalmente à esquerda: Número totalmente fracionário (pouco usado hoje); Vírgula totalmente à direita: Número inteiro.

22 Representação de dados Representação de sinal: Sinal e magnitude Usualmente o bit mais significativo (mais à esquerda) indica o sinal do número > > -54 Com essa notação, com n bits, é possível representar números de -(2 n-1 -1) até (2 n-1 -1). Ou seja, com 8 bits é possível representar números de -127 até 127. Esta forma não é usada computacionalmente.

23 Representação de dados Aritmética com sinal e complemento: Verificar sinal de cada número para identificar operação (soma ou subtração); Identificar o maior número e respectivo sinal; Subtrair o menor do maior; Aplicar o sinal do maior;

24 Representação de dados Representação de números negativos em complemento Tem a vantagem de ser computacionalmente mais simples e rápido, além de desperdiçar uma posição com um valor -0 Definido como: complemento de N = B n -N+1 Exemplo, N=76 10, utilizando 4 dígitos. C10 de 76= =9924

25 Representação de dados Representação numérica: Overflow Quando um número excede a capacidade do processador, um “flag” ou marcador é ativado para que o software tome providências a respeito.

26 Representação de dados Representação numérica: Ponto flutuante Muitos cálculos utilizam números muito grandes ou muito pequenos. Cálculos com ponto fixo seriam ineficientes com esses valores. Para estes cálculos é usado o ponto flutuante ou notação científica.

27 Representação de dados Representação normalizada Um número pode ser representado de diversas formas: * ,25 * * A normalização visa uniformizar a representação.

28 Representação de dados Representação normalizada A mantissa ou parte fracionária deve satisfazer a seguinte expressão: 1/B <= M <= 1 (exceto se M=0) Traduzindo: o primeiro digito da mantissa deve ser diferente de zero.

29 Representação de dados Conversão de números para ponto flutuante leva em consideração os seguintes elementos: Quantidade de bits/bytes dos dados; Modo de representação da parte fracionária; Modo de representação da parte do expoente; Quantidade bits definida para o expoente e mantissa; Posição do sinal da mantissa e do expoente; Valor da base da exponenciação.

30 Representação de dados S – Sinal do número E – Expoente: 1 bit para sinal, 6 para magnitude M – Mantissa, normalizada Base de exponenciação: 2 S Mantissa Expoente 1724

31 Representação de dados Exemplos: Conversão de valores decimais para ponto flutuante: 407,375: Sinal: 0 Expoente: Mantissa:

32 Representação de dados Representação decimal Em alguns casos, como em balanços bancários, é interessante que todos os dígitos sejam representados exatamente, não importando o tamanho. Arredondamentos não são aceitáveis. Nesses casos pode ser usado o sistema de representação decimal, no qual cada digito é convertido individualmente para binário.

33 Representação de dados Exemplo: 7458:


Carregar ppt "Representação de dados Livro Introdução à Organização de Computadores Capítulo: 7 – Representação de dados."

Apresentações semelhantes


Anúncios Google