A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

XXI Oficina Nacional de Problemas de Corte, Empacotamento e Correlatos Estudo de Heurísticas para a Resolução do Problema do Carregamento de Paletes com.

Apresentações semelhantes


Apresentação em tema: "XXI Oficina Nacional de Problemas de Corte, Empacotamento e Correlatos Estudo de Heurísticas para a Resolução do Problema do Carregamento de Paletes com."— Transcrição da apresentação:

1 XXI Oficina Nacional de Problemas de Corte, Empacotamento e Correlatos Estudo de Heurísticas para a Resolução do Problema do Carregamento de Paletes com Círculos Giancarlo Csonge Barotti Débora Pretti Ronconi

2 Introdução Carregamento de paletes com cilindros variados, sendo a otimização resposta ao aproveitamento máximo da base retangular Aplicações: tubulações, cabos e rolos... É possível, teoricamente, fazer todas as combinações e achar uma ou várias soluções ótimas De um ponto de vista prático, buscamos contornar a necessidade de testar todas as soluções possíveis Métodos heurísticos ajudam a buscar uma solução aproximada em tempo considerável. Esta característica é fundamental para decisões de curto prazo como aquelas associadas a problemas reais

3 Descrição do Problema Problema de corte circular restrito, denotado problema CC O problema consiste numa placa retangular que deve ser cortada em quantas peças circulares, de diversos tamanhos, for possível Cada peça é caracterizada por um raio, uma quantidade e um lucro (ou peso). O lucro é a área da peça de cada tipo. Assim, o objetivo é maximizar a área utilizada da placa

4 Métodos Estudados Downsland et al. (2007) – Padrão Hexagonal Huang et al. (2006) – Maximal Hole Degree Zhang e Deng (2005) – Discos Elásticos George et al. (1995) – Nº de Posição Hifi e M'Hallah (2004) – Heurística Construtiva Birgin et al. (2005) – Problema de Decisão

5 Birgin et al. (2005) Cilindros idênticos em uma base retangular Resolução por um problema de decisão não-linear: “Dados k círculos de raio r e um retângulo de lados d 1 e d 2, até quando é possível alocar todos os círculos dentro do retângulo ou não?” Objetivo: determinar os centros de cada um dos k círculos, p 1,..., p k  [r, d 1 - r] × [r, d 2 - r], resolvendo o seguinte problema: Minimizar ∑ i≠j max(0, (2r) 2 – || p i – p j || 2 2 ) 2 Sujeito a r ≤ p 1 i ≤ d 1 – r, e r ≤ p 2 i ≤ d 2 – r, para i = 1,..., k.

6 Generalização Para k círculos de raios r 1, r 2,..., r k diferentes, através de algumas poucas alterações na formulação não-linear original de Birgin et al., obtemos a formulação: Minimizar ∑ i≠j max(0, (r i + r j ) 2 – || p i – p j || 2 2 ) 2 Sujeito a r i ≤ p 1 i ≤ d 1 – r i, e r i ≤ p 2 i ≤ d 2 – r i, para i = 1,..., k. Problema: não basta apenas adicionar mais círculos, como no método original, para assegurar a maximização, uma vez que não há uma ordem definida que garanta a maximização da área ocupada

7 Definindo um Ordenamento Inicial Básico ordenamento decrescente dos círculos propicia, entre os ordenamentos básicos, os melhores resultados, sendo que o ordenamento crescente apresenta o resultado oposto

8 Aleatoriedade vs. Informações O método de Birgin et al. (2005) utiliza diversas soluções iniciais aleatórias para obter uma solução final Como, de algum modo, agregar informações úteis ao método?

9 Aprendendo com Problemas Menores Tentar empacotar os círculos da melhor forma possível em um retângulo menor, guardar esta informação e utilizá-la em um problema maior e assim por diante O empacotamento da base retangular original será então influenciado por uma série de empacotamentos anteriores

10 Parâmetros Breve definição dos parâmetros para o método a seguir

11 Quantidade de Passos É a quantidade de expansões a serem realizadas ou, alternativamente, a quantidade de paletes reduzidos a serem resolvidos Ex: 3 passos ( 16 passos na heurística final)

12 Proporção Refere-se à proporção entre as dimensões do subproblema inicial comparado ao retângulo original do problema Ex: Proporção de 50%

13 Salto Salto: determina o momento em que deve-se interromper a resolução de um subproblema e expandi-lo para um retângulo maior – Saltar, ou expandir o retângulo, somente após exaustão do subproblema, ou – Saltar assim que o houver a primeira falha ao adicionar um círculo – Saltar quando uma determinada densidade for atingida (ou quando ocorrer a primeira falha)

14 Densidade Em alguns casos o método atingia alta densidade de ocupação para os subproblemas, apresentando queda nesta densidade apenas no retângulo definitivo A densidade máxima encontrada para a heurística final foi de 75%

15 Posicionamento Posicionamento: resolvido um retângulo, onde localiza-lo no próximo?

16 Alocação Refere-se à areá passível de alocação de novos círculos, considerando interferir ou não na solução repassada do ultimo subproblema resolvido

17 Persistência Refere-se ao número de tentativas para se adicionar cada círculo onde serão utilizadas as informações da solução obtida no último sub- problema – N correspondente a quantidade de tentativas de se adicionar cada novo círculo – Das N tentativas, fixadas em 1000, qual a quantidade de vezes em que utilizaremos ou não as informações adquiridas nos subproblemas resolvidos anteriormente?

18 Categorias de Persistência Apenas na primeira tentativa; Nas primeiras 500 tentativas; Em todas as 1000 tentativas; Abandono progressivo das informações obtidas;

19 Memória É a quantidade de tentativas, das N tentativas de se adicionar um círculo, nas quais serão adotadas como coordenadas iniciais, para todos os círculos já alocados, as coordenadas da última alocação sucedida Testes demonstraram que uma memória de 50 tentativas é o suficiente

20 Resumo da Heurística Adicionar os Círculos em ordem decrescente 16 passos (ou subproblemas) Expandir ao primeiro círculo não alocado Densidade máxima em um subproblema: 75% Soluções iniciais obtidas centralizadas Tenta-se como solução inicial: 50 primeiras - ultima solução sucedida obtida Outras 950 tentativas - solução obtida no último subproblema resolvido

21 Exemplo

22

23 Desenvolvimento

24 Resultados GENCANProporção: 70%;Proporção: 50%; Decrescent e 2 Passos;16 Passos; Salto tipo 2.Salto tipo 3.Salto tipo 3; Memória: 50. SY179,110479,774779,912281,0387 SY279,050678,766679,914080,8434 SY380,353080, ,3341 SY479,717880,330279,200581,738 Ocupação Média 79,558079,875279,914081,2386

25 Resultados GENCAN DecrescenteHCGA-BHM-GENCANSY B1.0 SY179,11079,58280,72381,038783,186- SY279,05177,53579,41280,843481,638 SY380,35379,75681,65381,334181,940 SY479,71880,30780,38881,738081,738 SY581,74082,220 82,219982,220 SY681,58482,04282,17682,242582,243 Ocupação Média 79,99479,880080,879281,434882, ,0780

26 Conclusão Contornamos a questão do ordenamento dos círculos Confrontamos o valor de informações à aleatoriedade quanto a soluções iniciais As informações passadas dos subproblemas mostraram-se valor para a geração de novas soluções


Carregar ppt "XXI Oficina Nacional de Problemas de Corte, Empacotamento e Correlatos Estudo de Heurísticas para a Resolução do Problema do Carregamento de Paletes com."

Apresentações semelhantes


Anúncios Google