A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Aula 5 - Método experimental ou de seleção aleatória Material Elaborado por Betânia Peixoto Modificado por Guilherme Irffi e Francis Petterini.

Apresentações semelhantes


Apresentação em tema: "Aula 5 - Método experimental ou de seleção aleatória Material Elaborado por Betânia Peixoto Modificado por Guilherme Irffi e Francis Petterini."— Transcrição da apresentação:

1 Aula 5 - Método experimental ou de seleção aleatória Material Elaborado por Betânia Peixoto Modificado por Guilherme Irffi e Francis Petterini

2 Plano de Aula Definição de seleção aleatória Avaliação de impacto com seleção aleatório- instrumental teste de diferença de médias

3 Aleatorização  O "padrão ouro" na avaliação dos efeitos das intervenções  Permite-nos para formar um "tratamento" e "controle“ grupos características idênticas diferem apenas pela intervenção.  Melhor aproximação contrafactual

4 Atribuição aleatória  Cada unidade elegíveis tem a mesma chance de receber a intervenção.  Nos permite comparar o "tratamento" e "grupo de controle"

5 Atribuição aleatória vs Amostra Aleatória  Atribuição aleatória São os resultados observados devido à intervenção, em vez de outros fatores de predisposição. (validade interna)  Amostra aleatória Que os resultados encontrados na amostra se aplicam à população em geral, ou seja, são generalizáveis. (validade externa)

6 Exemplo de Aleatorização  Qual é o impacto de fornecer livros gratuitos aos alunos sobre os resultados dos testes? Aleatoriamente atribuir um grupo de crianças da escola para qualquer um: - Grupo de Tratamento - recebe livros gratuitos - Grupo de controle - não receber livros gratuitos)

7 Como você Aleatoriza?  Em que nível? Individual Grupo Escola Comunidade Distrito

8 Quando você usaria Aleatorização? Universo de indivíduos elegíveis geralmente maiores que os recursos disponíveis em um único ponto no tempo. Forma justa e transparente para atribuir benefícios Dá uma chance igual a todos na amostra. Bons momentos para randomize: Programas-piloto Programas com orçamento / capacidade Fase em programas

9 Realizar a avaliação de impacto quando a seleção entre tratados e não-tratados foi aleatória.

10 Relembrando: Impacto = ATT = E[Y p, P=1] - E[Y sp, P=1] Não observamos Y sp quando P=1. Se E[Y sp, P=1] ≠ E[Y c, P=0] Erro: ε= E[Y sp, P=1] - E[Y c, P=0] (1) O ATT é dado por: ATT = E[Y p, P=1] - E[Y c, P=0] + ε (2) Substituindo (1) em (2) ATT = E[Y p, P=1] - E[Y c, P=0] + {E[Y sp, P=1] - E[Y c, P=0] } Problema da avaliação Viés ou erro

11 No método experimental, a avaliação de impacto já é desenhada antes da implementação do programa. Tendo em mãos um conjunto de pessoas desejosas de participar do programa e com as características esperadas do público-alvo, dividimos aleatoriamente esse conjunto de pessoas em dois grupos: tratamento e controle. Método experimental ou de seleção aleatória

12 Conseqüência do sorteio Se temos um número grande de participantes, quando fazemos o sorteio esperamos que a única diferença entre os grupos seja a participação no programa. Tratamento: participam do programa. Controle: não participam do programa.

13 Sob seleção aleatória Quando um grupo controle é selecionado de forma aleatória, podemos considerar que, em média, o grupo tratado e o grupo controle são semelhantes – por causa da propriedade probabilística. Assim: E[Y sp, P=1] = E[Y c, P=0] ↔ E[Y sp, P=1] - E[Y c, P=0]=0 ATT = E[Y p, P=1] - E[Y c, P=0] + {E[Y sp, P=1] - E[Y c, P=0] } o ATT é dado por: ATT = E[Y p, P=1] - E[Y c, P=0] Viés ou erro = 0

14 ATT = E[Y p, P=1] - E[Y c, P=0] Basta comparar a média do grupo de tratamento e o de controle. No entanto, não basta comparar os valores das médias das duas amostras (tratado e controle) para saber se houve impacto. Para sabermos se, de fato, o programa teve impacto, é preciso saber se as médias populacionais são diferentes. Neste caso...

15 Como comparar duas médias populacionais com base nas amostras? Resposta: A partir de um “teste de diferença de médias”.

16 Teste de diferença de médias Suponha agora que estamos interessados em comparar a média de uma variável aleatório com base em duas amostras diferentes. Para isto podemos fazer o teste de diferenças entre médias Como as médias são calculadas a partir de uma amostra da população, a diferença matemática observada entre elas pode ser apenas devido a um erro amostral. Portanto, uma diferença entre duas médias amostrais não representa uma verdadeira diferença entre as médias populacionais.

17 Teste de diferenças entre médias Hipótese Nula: Não há diferença entre as Médias Populacionais H 0 : μ 1 = μ 2 μ 1 = média na população 1 μ 2 = média na população 2 Hipótese experimental: há diferença entre as Médias Populacionais H 1 : μ 1 ≠ μ 2

18 Para testarmos esta hipótese com uma probabilidade conhecida de acerto, precisamos calcular os chamados escores Z, supondo que a distribuição da variável é normal. Onde: é a média amostral é a diferença do erro padrão de cada média s é a variancia da amostra N é o tamanho da amostra

19 Z de teste Uma vez encontrado o Z de teste calculado pela fórmula do slide anterior, utilizamos uma tabela de Porcentagem da Área sob a Curva Normal - Z, para obtermos a probabilidade de não rejeitarmos H 0. Fazendo vezes a probabilidade calculada na tabela, temos a estatística conhecida como P-valor, que nos fornece a probabilidade de erro ao rejeitarmos H 0.

20 Z de teste- Exemplo Ex: Considere o teste de diferença de média entre duas amostras com o Z=0,68. Olhando na tabela encontramos a probabilidade 25,17, multiplicando por 2 temos 50,34% de acerto. O P-valor é de 49,66% (100-50,34) Isto significa que se rejeitarmos H 0 estariamos errando a uma probabilidade de 49,66%. Assim, não rejeitamos H 0 e dizemos que a diferença entre as médias amostrais não é significativa. Obs: estas médias podem ser matematicamente diferentes, mas esta diferença é devida a erro amostral.

21 Passos para o teste de diferença de médias 1o passo: Obter as médias amostrais 2o passo: achar o desvio padrão de cada amostra 3o passo: Calcular o erro padrão de cada média 4o passo:Achar a diferença do erro padrão das médias 5o passo: Achar a estatística Z 6o passo: Usando a tabela obter a probabilidade de acerto 7o passo: subtrair de 100% a probabilidade de acerto para achar o P-valor.

22 Aula de hoje: aprendemos a realizar a avaliação de impacto quando a seleção entre tratados e não-tratados foi aleatória. Próxima aula: iremos aprender a fazer a avaliação de impacto quando a seleção entre tratados e não-tratados não foi aleatória. Comentários Finais


Carregar ppt "Aula 5 - Método experimental ou de seleção aleatória Material Elaborado por Betânia Peixoto Modificado por Guilherme Irffi e Francis Petterini."

Apresentações semelhantes


Anúncios Google