A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Algumas estruturas de dados em SIGs Tabela Vectorial Matricial.

Apresentações semelhantes


Apresentação em tema: "Algumas estruturas de dados em SIGs Tabela Vectorial Matricial."— Transcrição da apresentação:

1 Algumas estruturas de dados em SIGs Tabela Vectorial Matricial

2 Estrutura matricial (raster) Informação geográfica com este tipo de estrutura resulta de uma partição regular do espaço em células (ou pixels). As células são geralmente quadradas: o tamanho é definido nesse caso através do comprimento do lado.

3 Exemplo Cada carta em formato matricial (ou imagem) tem um certo número de linhas e de colunas, e uma resolução. Para localizar a carta é suficiente indicar as coordenadas de algum dos vértices. (100,200) N 30 metros Valor do pixel

4 Matricial vs Vectorial - Exemplo: Suponha que a localização das áreas edificáveis de uma parcela de um PDM está representada num tema A e que a localização corrente dos edifícios está representada por um tema B num sistema de informação geográfica. A informação representada diz apenas respeito à localização, não havendo outros atributos. –Supondo que as áreas edificáveis não são muito desagregadas, é mais eficiente, em termos do tamanho do ficheiro, que A seja um tema vectorial de polígonos ou um tema matricial com resolução espacial de 2 metros? –Suponha que se pretende determinar o valor aproximado da área ainda disponível para edificação (área edificável sem edifícios). É mais eficiente, em termos de tempo de processamento, determinar essa área se A e B forem temas vectoriais de polígonos ou se forem temas matriciais com resolução espacial de 2 metros? Justifique.

5 Operações espaciais sobre dados matriciais Sejam x ij, y ij,..., os valores dos pixels da linha i e coluna j de temas x, y,..., e seja z um novo tema com o mesmo número de linhas e colunas que x e y. Funções locais: z ij =f(x ij ) ou z ij =f(x ij,y ij,...) Funções focais ou zonais: dada uma vizinhança V de (i,j), seja X ij o conjunto de valores do tema x para a vizinhança V. Então, z ij =f(X ij ) ou z ij =f(X ij,Y ij,...) Funções globais: o valor de z ij pode depender da totalidade dos valores de x, y,...., e das suas coordenadas.

6 Funções locais Reclassificação: Dado o tema x e uma função f de uma variável, o novo tema z é definido por z ij =f(x ij ). f é dada por uma tabela que associa a cada intervalo do domínio de valores de x um valor para z. [Mat01, Fig. 74] Se f apenas toma valores 0 e 1, o tema resultante é chamado booleano. Em geral, esses temas são usados para indicar as áreas onde se verifica ou não alguma condição.

7 Funções locais Sobreposição matricial: dados dois temas matriciais x e y, o resultado da sobreposição é um tema matricial z tal que z ij =f(x ij,y ij ) para todo as linhas i e colunas j da imagem A função f pode ser +,-,*,max,min,operaçáo lógica,..., de acordo com o domínio de valores dos temas Exemplo: Seja A ij =1 se o pixel (i,j) corresponde a zonas de regadio e A ij =0 caso contrário e B ij =1 para zonas de milho e B ij =0 caso contrário. Então a imagem obtida aplicando a função produto (*) a A e B terá valor 1 para os pixels correspondentes a milho de regadio e valor 0 para todos os outros pixels. Questão: que função f se pode usar se se pretender determinar as zonas de regadio ou de milho?

8 Funções focais ou zonais Dada uma imagem A, considere-se uma vizinhança de cada pixel (i,j). Consideram-se em geral vizinhanças 3*3, 5*5,..., mas podem igualmente ser consideradas vizinhanças com formas não quadradas. No caso de vizinhanças 3*3, podem ser considerados todos os vizinhos ou apenas aqueles que partilham a fronteira do pixel. 4 vizinhos8 vizinhos Pode distinguir-se o caso em que a vizinhança é a mesma para qualquer pixel (operações focais) ou o caso em que a vizinhança pode ter formas diferentes para pixels da imagem diversos (operações zonais).

9 Funções focais Um filtro é uma função dos valores dos pixels da vizinhança. Para uma imagem A, e para cada pixel (i,j), o filtro devolve um valor f(A ij, A i+1,j, A i-1,j, A i,j+1, A i,j-1,...). Exemplos de filtros: Determinação de declives e exposições Determinação de linhas de água (direcções de escoamento ) e de cumeada

10 Exemplo: declive Um filtro para determinação do declive da superficie: Declive ao longo da linha: dl=(A i+1,j - A i-1,j )/(2h) Declive ao longo da coluna: dc= (A i,j+1 - A i,j-1 )/(2h) em que h é o comprimento do lado do pixel. D ij = 180*arctg(sqrt(dl 2 +dc 2 )) é o valor estimado do declive (em graus) para cada pixel (i,j).

11 Exemplo: orientação de encostas A orientação de uma parcela de terreno é a direcção de máxima taxa de variação de altitude. Pode ser estimada de uma forma simples pelo seguinte filtro. 1.Estimar declives segundo as 8 direcções: N, NE, E, SE, S, SW, W, NW Por exemplo, d N =(A i,j -A i,j+1 )/h; d NE =(A i,j -A i,j+1 )/(sqrt(2) h),... 2.Escolher a direcção correspondente ao maior declive (ou plano se os declives são todos iguais) Neste caso o filtro é do tipo f=max direcção (d N, d NE,...).

12 Exemplo: determinação de bacias hidrográficas [ESRI: ArcToobox, função flow direction] 1.Determinação da direcção de escoamento de água: supõe-se que a água escoa na direcção de maior declive.

13 Exemplo: determinação de bacias hidrográficas (cont.) 2. Dado um pixel de coordenadas (i,j), identificar todas os pixels que drenam para esse pixel (através da direcção de escoamento). 3. Repetir o mesmo procedimento para todos os pixels identificados anteriormente. 4. O conjunto de pixels identificados forma a bacia do pixel (i,j). Problemas: 1) a discretização do espaço pode conduzir à criação de zonas artificialmente planas, limita a modelação da geometria da superfície; 2) não há escoamento sobre zonas planas. Nota: é possível atenuar a ocorrência de zonas artificialmente planas, considerando nesses casos filtros de maior dimensão.

14 Funções globais Exemplos: Distância a um certo elemento da imagem –Distância euclideana –Distância com custos (distância ponderada pela rugosidade da superfície). Criação de buffers sobre um tema matricial booleano Determinação da zona visível a partir de um pixel (usando um modelo digital do terreno)...

15 Exemplo: cálculo de distância com custos [ESRI: ArcToolbox, função Cost Distance] Objecto 1 Objecto 2 Rugosidade Tema alvoDistância mínima ao alvo mais próximo Nota: só direcções NS e EO são permitidas Este tipo de problema surge, por exemplo, quando se quer determinar o custo mínimo de construção de um caminho, que depende da distância e também do custo de construção em cada zona do terreno.

16 Estruturas de dados Tabela Vectorial Matricial Rede triangular irregular

17 Rede irregular triangular (TIN) Esta estrutura representa uma superficie através de um conjunto disjunto de elementos triangulares. Dado um conjunto de pontos de coordenadas (x,y,z), em que (x,y) são as coordenadas geográficas e z representa a cota, a triangulação consiste na definição de triângulos cujos vértices são esses pontos, que cobrem todo o espaço e não se sobrepõe.

18 triangulações A triangulação de Delaunay tem a propriedade de o interior da circunferência definida pelos 3 vértices de um triângulo não conter nenhum ponto cotado A densidade de triângulos difere em zonas distintas da carta As coordenadas originais dos pontos cotados são preservadas

19 Representação do relevo: modelos digitais do terreno Pontos cotados Estruturas vectorial de linhas (curvas de nível) Estruturas matriciais (matrizes de cotas, grid): cada pixel tem associada uma cota Rede irregular triangular (TIN): os pontos cotados são usados para a triangulação da superfície Estrutura matricial ou vectorial de polígonos: carta hipsométrica (classes de altimetria)

20 Informação derivada do modelo digital do terreno Carta de declives Carta de orientação de encostas (exposição): em geral, as exposições são agrupadas em 9 classes: N, NE, E, SE, S, SW, W, NW, plano. Carta de relevo sombreado: simulando a iluminação do terreno pelo sol numa posição determinada Rede de drenagem e bacias hidrográficas Carta de visibilidade a partir de um dado ponto (tri-dimensional) de observação


Carregar ppt "Algumas estruturas de dados em SIGs Tabela Vectorial Matricial."

Apresentações semelhantes


Anúncios Google