A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

1 Calculo e Instrumentos Financeiros Parte 2 Faculdade de Economia da Universidade do Porto 2012/2013.

Apresentações semelhantes


Apresentação em tema: "1 Calculo e Instrumentos Financeiros Parte 2 Faculdade de Economia da Universidade do Porto 2012/2013."— Transcrição da apresentação:

1 1 Calculo e Instrumentos Financeiros Parte 2 Faculdade de Economia da Universidade do Porto 2012/2013

2 2 Risco e sua diversificação

3 3 Introdução Quando alguém empresta um capital, tem como objectivo receber mais tarde esse capital que emprestou acrescido dos juros Mas existe sempre uma probabilidade de não receber nem uma coisa nem outra (no todo ou em parte).

4 4 Introdução Na análise de um investimento, porque é baseada em previsões quanto ao desempenho futuro do negócio –preços dos inputs, preços e quantidades dos outputs, depreciação do capital, falhas e descobertas tecnológicas A medida calculada a priori na avaliação pode, a posteriori, vir a concretizar-se de forma menos favorável.

5 5 Introdução No sentido de compreendermos o risco, controlá-lo e utilizá-lo na tomada de decisão, vamos neste capítulo apresentar a modelização estatística do risco.

6 6 Exemplo: seguro de vida Se a seguradora soubesse a priori quantos anos faltavam para o segurado morrer e a taxa de juro, calculava facilmente o prémio do seguro que lhe permitiria capitalizar a indemnização e ter algum lucro Mas na data de assinatura do contrato essas grandezas não são conhecidas

7 7 Exemplo: seguro de vida Ex.2.1- Num seguro de vida em que é paga a indemnização na data da morte. A seguradora capitaliza os prémios pagos pelo segurado de forma a ter reservas para pagar a indemnização. A seguradora tem uma margem de 10% Qual o prémio anual por cada 1000 de indemnização?

8 8 Exemplo: seguro de vida Se a duração fosse N e a taxa de juro r tínhamos

9 9 Exemplo: seguro de vida Se N=40 e r = 2% resultava: Mais os 10%, seriam 17.86/ano/1000 = 1.786%/ano

10 10 Exemplo: seguro de vida Mas sem conhecermos N nem r o melhor que pode ser feito é a construção de alguns cenários Dividimos cada variável em cenários Como exemplo, fazemos os cenários M.Mau, Mau, Médio, Bom, M.Bom M.Mau, Mau, Médio-, Médio+, Bom, M.Bom

11 11 Exemplo: seguro de vida Cada cenário é uma combinação de valores possíveis para as variáveis relevantes No caso de variáveis contínuas, esse valor é o representante de um intervalo, e.g., o valor do meio.

12 12 Exemplo: seguro de vida F5: =$C$1*$E6/((1-(1+$E6)^-F$5)*(1+$E6)^(F$5+1))*(1+$C$2) Área F6:K10 com formatação condicionada (se <17.86)

13 13 Introdução Os cenários conseguem dar uma ideia dos potenciais perdas e ganhos mas não nos ajudam quantitativamente na decisão Vamos necessitar de alguns conceitos estatísticos que permitam agregar a informação.

14 14 Conceitos estatísticos básicos

15 15 Conceitos estatísticos básicos A Estatística descreve, organiza e relaciona objectos e fenómenos demasiado difíceis de apreender com as ferramentas conceptuais da matemática clássica (i.e., funções reais de variáveis reais).

16 16 Conceitos estatísticos básicos A estatística reduz a dimensão do fenómeno considerando Poucas variáveis (as mais relevantes) e Conhecimento parcial dessas variáveis

17 17 Conceitos estatísticos básicos Por exemplo, quando se constrói um avião, é necessário colocar bancos adequados para acomodar Pessoas com Necessidades Especiais (PNE). Com é impossível saber as necessidades nos voos futuros, Vamos medir, na população, a percentagem de PNE, Vamos supor que 3% são PNE.

18 18 Conceitos estatísticos básicos Partindo desta informação pouco pormenorizada –Calculada com os passageiros do passado podemos calcular, com a ajuda da estatística, estimativas para as necessidades das viagens futuras –Supomos a estabilidade das características da população

19 19 Conceitos estatísticos básicos Sabendo-se que 3% dos indivíduos são PNE, em x% das viagens futuras (com 200 passageiros) haverá necessidade de N lugares

20 20 Noção de variável estatística

21 21 Noção de variável estatística Depois de construirmos um modelo que nos permite quantificar o impacto da nossa decisão em função das variáveis relevantes (e.g., taxa de juro, taxa de crescimento as vendas) O risco resulta de não conhecermos os valores concretos que as variáveis vão assumir no futuro.

22 22 Noção de variável estatística Por exemplo, na construção de um automóvel não sei a altura nem o peso do futuro condutor. –Será um valor sorteado da população Substituir a falta de informação assumindo que será um valor retirado aleatoriamente da população da qual conheço estatísticas –e.g., o valor médio e a dispersão

23 23 Noção de variável estatística Numa extracção aleatória os indivíduos são obtidos sem ter em atenção nenhuma das suas características –e.g., a extracção de uma bola no Euromilhões não tem em atenção o número.

24 24 Probabilidade A cada um dos valores possíveis (i.e., cada cenário) é atribuído uma probabilidade e.g., atirando uma moeda ao ar, a probabilidade de sair cara é 50%.

25 25 Interpretações de probabilidade Probabilidade de se concretizar o valor x Clássica: é a proporção de vezes em que observo o valor x se repetir a experiência de forma independente e muitas vezes Bayesiana: é uma conjectura construída por peritos sobre o fenómeno ainda desconhecido se concretizar com o valor x Em termos práticos, a perspectiva bayesiana é mais flexível mas não tem tanto suporte teórico

26 26 Probabilidade A probabilidade não garante qual o valor que se vai obter no concreto e.g., sabe-se que a probabilidade de numa viagem haver 6 PNE é de 15.8% mas contém um certo grau de informação que me ajuda a avaliar a importância relativa dos cenários construídos

27 27 Probabilidade Ex.2.4. Foram identificados 8 cenários possíveis quanto ao comportamento do preço do Brent em dólares daqui a 10 anos e inquirida a opinião de 100 peritos, numa escala de 0 a 10, sobre a viabilidade relativa de ocorrência de cada cenário.

28 28 Probabilidade Com base na soma dos pontos atribuídos por todas as pessoas, determine a probabilidade assumida para que cada um dos cenários possa vir a acontecer.

29 29 B5: =B4/$J4 J4: =Soma(B4:I4)

30 30 2ª Aula

31 31 Concluindo, 1 - Eu tenho um modelo de cálculo das implicações financeiras da minha decisão onde me falta a informação sobre o cenário concreto que se vai realizar

32 32 Tenho um modelo com os valores para as variáveis conhecidos

33 o melhor que posso fazer para ultrapassar a minha ignorância é substituir o valor desconhecido por uma variável aleatória de que eu tenho informação quanto à probabilidade de cada cenário se vir a concretizar.

34 34 Substituo o valor desconhecido por uma variável aleatória

35 35 Uso uma variável aleatória como modelo do risco Esta substituição (do cenário futuro desconhecido pela variável aleatória) implica que tenha como resultado não um valor mas também uma variável aleatória (como se fosse toda uma população de resultados).

36 36 Exemplo Ex.2.5. Conhecida a probabilidade de o individuo durar determinados anos retome o Ex.2.1 e calcule a probabilidade da seguradora ter uma margem das vendas abaixo dos 10% pretendidos

37 37 Caracterização da v.e. População dividida em cenários –Intervalos Pego nos indivíduos todos da população e calculo a proporção que cai dentro de cada classe e.g., divido a longevidade de uma pessoa nos intervalos [0, 30]; ]30,60]; ]60,90] e ]90, 120]

38 38 Caracterização da v.e. Não podendo medir toda a população, utilizo uma amostra no cálculo da probabilidade

39 39 Exemplo a probabilidade de cada cenário é determinada com informação passada e pela opinião de um painel de peritos

40 40

41 41 Exemplo R. Como tenho informação quanto à probabilidade de cada um dos cenários poder ocorrer, olhando para o resultado de cada cenário (apresentado no Ex. 2.1) somo a probabilidade dos cenários em que o prémio deveria ser maior que o adoptado (1.786%/ano) A probabilidade da margem das vendas ficar abaixo dos 10% pretendidos é 57.78%.

42 42 Tabelas de sobrevivência As seguradoras têm tabelas que dão a probabilidade de uma pessoa estar viva decorridos x anos. Quantificado em partes por Por exemplo, o INE estima que a probabilidade de um individuo nascido em 2007 estar vivo em 2040 é 98439/100000

43 43 Tabela de sobrevivência

44 44 Exercício Ex.2.6. Uma empresa contrata um financiamento de 10M com 3 anos de diferimento e amortizado nos restantes 7 anos, pagamentos trimestrais postecipados. TAE é a EURIBOR mais 2.5 p.p. Usando um quadro de probabilidades conhecido, determine P(prest>750k) 500 mil

45 45 D6: =(A6+B6)/2; E6: =D6+E$1; F6: =(1+E6)^(1/4)-1 G6: =B$3*F6/(1-(1+F6)^-E$2); E3=Soma(C12:C18)

46 46 Exercício Ex.2.7. Uma família adquire um imóvel a crédito 150k a 40 anos Prestação mensal iguais em termos reais Antecipada

47 47 Exercício Vamos fazer a análise a preços constantes e calcular a prestação anual paga no meio do ano da renda cujo valor actual é 150k: –que evita saber a taxa de inflação

48 48 Exercício Podíamos fazer mensal mas a ideia é visualizar o efeito do pagamento ser a meio do período.

49 49 Dados

50 50 J5: =$B$1*$D5/(1-(1+$D5)^-$B$2)/(1+$D5)^0,5/E$4 O5: =IF(J5>$P$2;E5;0)P3: =SUM(O5:S9)

51 51 Valor médio Na tomada de decisão é conveniente agregar todos os cenários em apenas algumas medidas. Em termos económicos, o valor médio é a medida que contém mais informação é a componente sem risco do fenómeno que estamos a analisar.

52 52 Valor médio Havendo n cenários caracterizado cada um por x n, com determinada probabilidade de ocorrência, p n, o valor médio será –Porque as probabilidades somam 1

53 53 Valor médio O valor médio já nos permite um critério quantitativo que nos ajuda a decidir numa situação com risco. Mas é muito limitado porque não tem em atenção o risco (a variabilidade)

54 54 Ex.2.8. Um empresa fornece refeições a aviões. Que confecciona durante a noite para responder às solicitações do dia seguinte que são incertas. Por cada refeição que fornecer recebe 15 (com um custo de produção de 5) e tem uma penalização de 15 por cada refeição que seja pedida e não possa ser fornecida. As refeições que sobram são destruídas no fim do dia.

55 55 i) Determine, em média, a rentabilidade do fornecimento em função do número de refeições confeccionadas. ii) Determine o número de refeições que maximiza a rentabilidade média.

56 56 A empresa constrói cenários em que a variável desconhecida é o número de refeições encomendadas Calcula, para cada dia e com base na sua experiência, a probabilidade de cada um dos cenários se verificar. Com essas probabilidades, a empresa determina o resultado médio do dia em função do número de refeições confeccionadas (que é a variável de decisão).

57 57 E6: =MÍNIMO(C6;$D$1)F6: =C6-E6 G6: =E6*E$4-D$1*D$2+F6*F$4 H6: =D6*G6H15: =SOMA(H6:H14)

58 58 Alterando o valor da variável de decisão, D1, determino qual o número de refeições que maximiza o resultado médio, H15

59 59 Optimização O Excel tem a ferramenta Solver que permite maximizar ou minimizar o resultado de um modelo. No Excel 2007: Office Button+ Excel Options + Add-ins category +no Manage clickar em Go…, +Solver Add In Depois, aparece no Analysis

60 60 3ª Aula

61 61 Desvio padrão Ao agregarmos os cenários no valor médio ficamos sem uma medida de risco o desvio padrão,, é uma boa medida do risco de assumirmos o valor médio dos cenários possíveis como o valor do cenário que vai acontecer (e que é desconhecido)

62 62 Desvio padrão Algebricamente é a raiz quadrada da Média dos desvios ao quadrado

63 63 Desvio padrão O desvio padrão é uma expressão derivável e que tem interpretação geométrica. –Se, e.g., uma população se agrega no valor médio 25/dia e desvio padrão 5/dia, é equivalente a ter metade dos indivíduos em 20/dia e outra metade em 30/dia.

64 64 Desvio padrão Ex Uma empresa pretende internacionalizar-se e traçou vários cenários possíveis Determine o valor médio e o desvio padrão do resultado financeiro que resulta da internacionalização.

65 65 D2: =$B2*C2D10: =SUM(D2:D9) E2: =(C2-$D$10)^2F2: =$B2*E2 F10: =SUM(D2:D9) F11: =F10^0,5

66 66 Ex Supondo que nos baralhos de 52 cartas uma figura vale 10 pontos. Determine o valor médio e o desvio padrão dos pontos de uma carta retirada aleatoriamente. Nesta população teórica eu posso calcular os valores da população

67 67 4 cartas valem 1 ponto, 4 cartas valem 2 pontos …. 4 cartas valem 9 pontos 16 cartas valem 10 pontos

68 68 O desvio padrão será

69 69 Ex Relativamente ao Ex. 2.8, determine o desvio padrão dos resultados. Determine o número de refeições que maximiza o valor médio do resultado menos o seu desvio padrão.

70 70 I6: =(G6-$H$15)^2J6: =I6*D6 J15: =SOMA(J6:J14)J16: =J15^0,5

71 71 Função de distribuição Quando a variável é contínua podemos partir o domínio em intervalos, cenários, e apontar uma probabilidade de o acontecimento vir a pertencer a cada um dos cenários. Em cada cenário adoptamos como valor representativo o meio do intervalo

72 72 Função de distribuição É aceitável pensar que os cenários vizinhos devem ter associadas probabilidade semelhantes. A Estatística propõe o uso de uma função F(x) que quantifica a probabilidade de ser observado um valor menor que ou igual a dado valor x.

73 73 Função de distribuição A função de distribuição é caracterizada por alguns parâmetros No ex.2.1 usei a Distribuição de Poisson que se caracteriza por 1 parâmetro Valor médio = Desvio Padrão

74 74 Distribuição Normal É caracterizada por dois parâmetros –O valor médio –O desvio padrão (ou a variância) Variância = desvio padrão ao quadrado Resulta como distribuição limite da soma de acontecimentos estatisticamente pouco dependentes

75 75 Distribuição Normal A probabilidade de acontecer o cenário ] – ; + ] é de 68.3% 2/3; ] – 2 ; +2 ] é de 95.5% 19/20 ] – 3 ; +3 ] é de 99.7% 997/1000.

76 76 Distribuição Normal Ex. o QI -coeficiente de inteligência é uma variável aleatória com distribuição normal com média 100 e desvio padrão 15 A probabilidade de encontrar aleatoriamente um indivíduo com QI > 145 é 0.13% (i.e., uma em cada 740 pessoas) =1-DIST.NORM(145;100;15;VERDADEIRO) Inglês: NORMDIST

77 77 Distribuição Normal A Distribuição Normal concentra a maior probabilidade nos cenários em torno do valor médio

78 78 Exercício Ex Comprei obrigações a 25 anos à taxa de juro nominal fixa de 3%/ano, sem possibilidade de mobilização antecipada. A taxa de inflação média prevê-se seguir distribuição N(0.02, 0.01)/ano Determine o valor real a receber no fim do prazo de aplicar e a probabilidade de esse valor ser menor que a quantia aplicada.

79 79 Exercício 1) Vou dividir o domínio da taxa de inflação em cenários e calcular o valor capitalizado para cada cenário 2) Calculo o valor médio e o desvio padrão do V.F. em termos reais e a probabilidade de vir a ser recebido uma quantia menor que a aplicada.

80 80 Exercício

81 81 A7: =G1-4,25*G2B7: =A7+$G$2/2A8: =B7D7: =(A7+B7)/2 C7: =DIST.NORM(B7;G$1;G$2;true)-DIST.NORM(A7;G$1;G$2;true) E7: =(1+C$1)/(1+D7)-1F7: =C$2*(1+E7)^C$3 G7: =F7*C7 H7: =(F7-G$25) I7: =H7^2*C7C24: =SOMA(C7:C23)G25: =SOMA(G7:G22)/C24 I24: =SOMA(I7:I22)/C24I25: =I24^0,5 I26: =DIST.NORM(C2;G25;I25;true)

82 82 4ª Aula

83 83 Distribuição Uniforme Na F.D. Uniforme os valores no domínio são todos igualmente prováveis. Pode se caracterizada pelos extremos –valores mínimo e máximo Pelo valor médio e amplitude Pelo valor médio e desvio padrão

84 84 Distribuição Uniforme Sendo dados = valor médio = desvio padrão O Valor mínimo = O Valor máximo =

85 85 Distribuição Uniforme Sendo dados Mx = valor máximo Mn = valor mínimo Valor médio = (Mn + Mx)/2 Desv. padrão = (Mx - Mn)

86 86 Distribuição Uniforme A probabilidade de um cenário é a sua proporção no domínio possível. Ex., com a distribuição uniforme U(Min,Mx) = U(5; 10) A probabilidade do cenário [5;6] é 1/5

87 87 Escolha da F.Distribuição A função distribuição não é conhecida sendo uma proposta da Teoria. No entanto, em termos de decisão económica, a função distribuição não é um factor crítico (ver ex.2.13). e.g., considerar uma função distribuição normal é idêntico a considerar uma função de distribuição uniforme.

88 88 Distribuição não simétrica No entanto, quando o fenómeno é caracterizado por uma função muito assimétrica, –Existe uma probabilidade mais elevada de alguns acontecimentos catastróficos –Mede-se com –m é zero nas F.D. simétricas não posso utilizar uma função simétrica

89 89 Distribuição não simétrica Exemplo de uma distribuição assimétrica é o caudal de um rio É normal ter –m / > 5 –80% dos dias um caudal ao valor médio –1 dia em cada 100 anos haver um caudal 30 vezes superior ao caudal médio

90 90 Distribuição não simétrica Os caudais muito elevados (e.g., que ocorrem com a probabilidade de 1 dia em 100 anos) têm muito poder destrutivo Os seguros contra danos de cheias têm que quantificar com rigor a probabilidade destes acontecimentos extremos –As barragens e pontes têm que ser feitos de forma a resistir a estes caudais extremos.

91 91 Distribuição não simétrica O caudal médio do rio Douro no Porto é 714m 3 /s A ponte de Entre-os-Rios caiu com o caudal no Porto de ~13500m 3 /s –A maior cheia conhecida no Porto ocorreu em 23 de Dezembro de 1909 (e 6 Dez. de 1739) com >20000m 3 /s –A barragem de Lever-Crestuma está dimensionada para 26000m 3 /s

92 92 Ribeira, 1962/01/03 10:00, ~17000m 3 /s, 1909 foi > em 68cm

93 93 Operações algébricas com uma variável aleatória

94 94 Operações algébricas simples Se somarmos uma constante a uma variável aleatória –O valor médio vem aumentado –O desvio padrão mantêm-se

95 95 Operações algébricas simples Ex. A altura das pessoas é N(1.75, 0.15) Supondo-as em cima de uma cadeira com 0.5m, a altura total será N(2.25, 0.15)

96 96 Operações algébricas simples

97 97 Operações algébricas simples

98 98 Operações algébricas simples Se multiplicarmos uma constante por uma variável aleatória –O valor médio vem multiplicado –O desvio padrão vem multiplicado pelo valor absoluto da constante

99 99 Operações algébricas simples

100 100 Operações algébricas simples

101 101 Operações algébricas simples Ex Um marceneiro tem 1000/mês de despesas fixas e tem de margem das vendas, em média, 15 por cada móvel que produz. Supondo que projecta produzir este mês 100 móveis, qual será a sua remuneração em termos médios? R. Atendendo às propriedades, teremos 100 – 1000 = – 1000 = 500

102 102 Ex.2.15 Um empresário está a avaliar o aluguer de um barco de pesca pelo qual paga 3mil/dia. Demora um dia de viagem para cada lado e pesca, durante 5 dias, 2500kg/dia O preço de venda segue distribuição N(2,1)/kg Quanto será o lucro? Qual a probabilidade de ter prejuízo?

103 103 Ex.2.15 O lucro será N(2; 1) – =12500 N(2; 1) – = N(25000; 12500) – = N(4000; 12500) Em média 4mil com desvio padrão de 12.5mil A probabilidade de ter prejuízo será 37.45%, =NORMDIST(0;4000;12500;TRUE).

104 104 Exercício Compro os legumes a 0.50/kg, pago 75 pelo transporte e o preço de venda é desconhecido tendo distribuição N(0.60; 0.15)/kg. i) Determine qual vai ser o meu lucro de intermediar 1000kg de legumes. ii) Determine a probabilidade de eu ter prejuízo.

105 105 Exercício i) Lucro = V.(Pvenda – Pcompra) – Ctransporte = 1000[N(0.60, 0.15) – 0.50] – 75 Lucro = N(600, 0.15x1000) – 575 = N(25, 150) ii) No Excel teríamos A1: =Dist.Norm(0; 25; 150; Verdadeiro) 43.38%

106 106 Exercício Ex O empresário A fez uma descoberta que lhe permite desenvolver um negócio cujo q de Tobin é N(1.5, 0.25) e onde é necessário investir 1M. Sendo que o empresário A vendeu ao empresário B metade do negócio por 625k, qual será o q de Tobin de A e de B?

107 107 Exercício R. A investe 375k que terá B investe 625k que terá

108 108 Acções - obrigações O Ex.2.16 ilustra porque é vantajoso o empreendedor emitir acções da sua empresa. Uma acção é uma parte do capital próprio da empresa tendo, em termos contabilísticos, um certo valor nominal, normalmente 1.

109 109 5ª Aula

110 110 Acções - obrigações Por exemplo, uma empresa com um capital social de 10M divide-se em 10M de acções com valor nominal de 1 cada. A acção dá direitos de voto na condução dos destinos da empresa e é remunerada com uma parte dos lucros, o dividendo, que é incerto.

111 111 Acções - obrigações As acções têm maior risco que as obrigações porque, em caso de insolvência, os activos da empresa pagam primeiro as obrigações e apenas o que sobrar (i.e., nada) é que é dividido pelas acções. Além disso, no contrato de emissão o resultado das obrigações é conhecido (o cupão e o valor de remissão) enquanto que o lucro da empresa é variável.

112 112 Acções - obrigações Interessa ao empresário dispersar o capital da empresa porque, normalmente, a empresa emite as acções, numa operação denominada por OPV (mercado primário), a um preço superior ao valor contabilístico. As acções são depois transaccionadas entre investidores (mercado secundário) sendo o seu preço, denominado por cotação, determinado pela expectativa que os agentes económicos têm da evolução futura do negócio (i.e., dos dividendos e da cotação).

113 113 Operações algébricas não simples Se quisermos calcular um prémio de um seguro de vida em que a duração do individuo é uma variável aleatória, as operações algébrica não são simples:

114 114 Operações algébricas não simples Cálculo expedito. Sendo que temos y = g(x), obtemos um valor aproximado da distribuição usando os dois pontos notáveis x 1 = - e x 2 = + Calculamos y 1 = g( - ) e y 2 = g( + ) Valor médio = (y 1 + y 2 )/2 Desv. padrão = |y 2 - y 1 |/2

115 115 Operações algébricas não simples Nas distribuições simétrica é indiferente usar Valor médio = (g( - ) + g( + ))/2 g( ) Nas distribuições assimétricas é melhor usar Valor médio = (g( - ) + g( + ))/2

116 116 Exercício Ex O prémio de um seguro de vida com r = 2%/ano, L ~ N(50, 10) i) Determine qual devem ser as reservas Y/1000 de forma a ter Y = (P) + (P). ii) Se a seguradora propõe um prémio antecipado de 15/ano por 1000 seguros, qual será o seu lucro?

117 117 Exercício P(40) = 16.23/ano; P(60) = 8.60/ano. a seguradora precisará reservas com média ( )/2 = 12.42/ano e desvio padrão ( )/2 = 3.82/ano aconselhando a prudência a que as reservas sejam = 16.23/ano.

118 118 Exercício P(40) = 16.23/ano; P(60) = 8.60/ano. Lucro(40) = 15–16.23 = –1.23/ano; Lucro (60) = 15–8.60 = 6.40/ano. Para uma longevidade genérica, o lucro do seguro terá valor médio = (– )/2 = 2.59/ano desvio padrão = ( )/2 = 3.82/ano.

119 119 Operações algébricas não simples Divisão em cenários. Já utilizamos esta abordagem (ex ex.2.11). Divide-se o domínio da variável em cenários sendo conveniente utilizar a folha de cálculo. Ao considerarmos intervalos mais pequenos, estamos a diminuir o erro de cálculo.

120 120 Operações algébricas não simples

121 121 Operações algébricas não simples C7: =NORMDIST(B7;C$2;C$3;TRUE)- NORMDIST(A7;C$2;C$3;TRUE) D7: =(A7+B7)/2+0,5 E7: =F$1-H$1*F$2/(1-(1+F$2)^-D7)/(1+F$2)^(D7+1) F7: =C7*E7 G7: =E7-F$40 H7: =G7^2*C7 C39: =SUM(C7:C38) F40: =SUM(F7:F38)/$C39 H39: =SUM(H7:H38)/$C39 H40: =H39^0,5

122 122 Método de Monte Carlo Método de Monte Carlo. 1) Sorteamos vários valores para a variável de acordo com a sua função distribuição. 2) Aplica-se o modelo aos dados e determina- se uma população de resultados possíveis. Calcula-se o valor médio, o desvio padrão, faz- se um histograma, etc., dos resultados. Tools + Data Analyses + Random Number Generation **

123 123 Método de Monte Carlo **Excel 2007 Instalamos o Data Analyses Office Button + Excel Options + Add Ins + Excel Add Ins Go… Depois, aparece em Data o Data Analysis

124 124 Método de Monte Carlo

125 125 Método de Monte Carlo 2.69

126 126 Método de Monte Carlo O Método de Monte Carlo é de simples implementação É muito flexível e poderoso Permite determinar o erro de cálculo

127 127 Comparação dos métodos O método expedito, por usar apenas dois pontos notáveis, será o de menor grau de confiança A divisão em cenários está dependente do detalhe dos cenários O método de monte carlo está dependente do número de elementos extraídos

128 128 Comparação dos métodos No caso do Ex.2.17

129 129 Diversificação do risco

130 130 Diversificação do risco O modelo estatístico ajuda a decidir num problema com risco Podemos diminuir o risco juntando actividades – diversificando Em termos estatísticos, são operações de soma de variáveis aleatórias.

131 131 Diversificação do risco Em termos económicos trata-se de construir uma carteira de activos Não pôr os ovos todos no mesmo cesto Uma concretização negativa de um activo será estatisticamente compensada por uma concretização positiva de outro activo

132 132 Diversificação do risco Por exemplo, na praia podemos vender gelados e gabardines. Quando faz calor, a venda de gabardines dá prejuízo e a de gelados dá lucro Quando chove, a venda de gabardines dá lucro e a de gelados dá prejuízo Vender de ambos diminui o risco

133 133 Diversificação do risco Faz CalorChove Gelados Gabardines Total do negócio +100

134 134 Duas variáveis Divisão das variáveis em cenários –Probabilidades cruzadas Já utilizamos no ex.2.5 O método é semelhante à situação em que temos uma variável estatística, mas agora serão cenários que envolvem a concretização de vários contingências.

135 135 Exercício Ex Um pescador precisa decidir se vai pescar ou não. Não sabe a quantidade que vai pescar nem o preço a que vai vender. A intuição permite-lhe construir cenários e atribuir-lhes probabilidades. De, em simultâneo, se verificar uma quantidade pescada (em kg) e um preço (em /kg).

136 136 Exercício Pesca \ preço[1; 2]/k]2; 3]/k]3; 4]/k [0; 100]kg0%4%10% [100; 250]kg1%35%15% ]250; 400]kg5%10% ]400; 500]kg9%1%0%

137 137 Exercício O pescador pode agora calcular a receita (em termos médios e desvio padrão) multiplicando a quantidade (do meio do intervalo) pelo preço (do meio do intervalo) e decidir ir pescar se, e.g., a receita média menos o desvio padrão for maior que os custos fixos

138 138 Exercício

139 139 Exercício B8: =$A2*B$1 F2: =B8*B2 H6: =SUM(F2:H5) F8: =(B8-$H$6)^2*B2 H12: =SUM(F8:H11) H13: =H12^0,5

140 Decisão Depende agora dos custos fixos necessários para poder pescar. Se fossem, por exemplo, 500 ficaria Lucro médio = 61,50 Des.Pa.lucro = 270,76 Se a função objectivo fosse LM-DP = , não ia pescar por ser <0. 140

141 141 6ª Aula

142 142 Exercício Ex Uma empresa com 1000 trabalhadores pretende contratar um seguro de trabalho que dura 5 anos O seguro, em caso de morte, paga 60 meses de salário à viúva. Quanto deve ser o prémio mensal, antecipado?

143 143 Exercício R. Temos 3 variáveis desconhecidas, a taxa de juro, a longevidade e o salário Vamos supor que a seguradora assumiu 45 cenários, calculou as probabilidades de cada um e construiu um modelo no Excel. Assume-se que a probabilidade de nos 5 anos o trabalhador morrer é 0,140%

144 144 Exercício

145 145 Exercício

146 146 Exercício K3: =I3*$O$2*H3/(1-(1+H3)^-G3)/(1+H3) L3: =K3*J3 M3: =(K3-$L$52)^2*J3 L51: =SOMA(L3:L49) M50: =SOMA(M3:M49) M51: =M50^0,5

147 147 Exercício As reservas médias são de 4.91 pelo que a seguradora tem lucro médio positivo com um prémio baixo, 6/mês Mas, este negócio tem um risco tão elevado (d.p.=166.85/mês) para a seguradora que é inviável. Apenas será possível se a seguradora conseguir diversificar este seguro. –Segurar os 1000 trabalhadores?

148 148 Associação entre variáveis - FD No caso de termos duas variáveis aleatórias, além da F. Distribuição e dos parâmetros (valor médio e desvio padrão) que caracterizam cada uma das variáveis, haverá um parâmetro para quantificar o grau de associação estatística entre as variáveis.

149 149 Associação entre variáveis - FD Por exemplo, nas calças são importantes a largura da cintura e a altura de perna do cliente que, na hora de fabrico, são desconhecidas. Mas, num cliente aleatório, em média, quanto maior for a sua cintura, maior será a sua altura de perna. As calças de número maior são mais compridas

150 150 Associação entre variáveis -FD Covariância: é um parâmetro que condensa a associação entre duas variáveis estatísticas.

151 151 Associação entre variáveis t1A covariância pode ser negativa, zero ou positiva. É crescente com os desvios padrão das variáveis A variância é um caso particular da covariância

152 152 Associação entre variáveis Coeficiente de correlação linear de Pearson, (x, y) Retira à covariância o efeito dos desvios padrão

153 153 Associação entre variáveis Coeficiente de correlação linear está no intervalo [–1; 1] Se for zero, as variáveis não estão associadas (linearmente). Se for –1 ou 1, estão perfeitamente associados em sentido contrário ou no mesmo sentido, respectivamente.

154 154 Associação entre variáveis Propriedades da covariância e do coeficiente de correlação linear i) A covariância (e o coeficiente de correlação linear) entre duas constantes ou entre uma variável e uma constante é zero (a, b) = 0; (a,X) = 0

155 155 Associação entre variáveis ii) Somando uma constante a uma das variáveis, a covariância e o coeficiente de correlação linear mantêm-se: (a+X,Y) = (X,Y); (a+X,Y) = (X,Y)

156 156 Associação entre variáveis iii) Multiplicando uma das variáveis por uma constante, a covariância vem multiplicada e o coeficiente de correlação linear mantém-se (a menos do sinal e de ser zero): (a.X,Y) = a. (X,Y); (a.X,Y) = sig(a). (X,Y)

157 157 Associação entre variáveis iv) A covariância e o coeficiente de correlação são comutativos: (X,Y) = (Y,X); (X,Y) = (Y,X)

158 158 Exercício X~N(10;5), Y~N(-1;3), (X; Y) = 0.7 Determine a) (3X; 2Y) e (3X;2Y) b) (-X; 2Y) e (-X;2Y) c) (5-5X;-2-Y) e (5-5X;-2-Y)

159 159 Exercício (X; Y) = 0.7*5*3 = 10.5 a) (3X; 2Y)=3*2*10.5 = 63, (3X;2Y)=0.7 b) (-X; 2Y)= -1*2*10.5 = -21, (-X;2Y)=-0.7 c) (5-5X;-2-Y) = -5*-1*10.5 = 52.5, (5-5X;-2-Y) = -1*-1*0.7=0.7

160 160 Soma de variáveis estatísticas diversificação do risco

161 161 Soma de variáveis estatísticas Até agora apenas somamos constantes com variáveis É muito relevante no contexto da M.F. porque modeliza o comportamento estatístico das carteiras de activos partindo-se das propriedades individuais dos activos que a constituem.

162 162 Soma de variáveis estatísticas Distribuição da soma de duas V.A. Se as variáveis tiverem distribuição normal, então a soma também terá distribuição normal. Se não tiverem, a soma será mais próxima da distribuição normal que as distribuições das parcelas. A soma de + 30 variáveis aleatórias com distribuição desconhecida que sejam pouco correlacionadas, pode assumir-se que tem distribuição normal.

163 163 Soma de variáveis estatísticas Média da soma. Sendo que existem duas variáveis, X e Y, a soma Z = X + Y terá como valor médio a soma dos valores médios de cada variável estatística.

164 164 Soma de variáveis estatísticas Variância e desvio padrão da soma. Sendo que existem duas variáveis, X e Y, a soma Z = X + Y terá como variância a soma das variâncias de cada variável mais duas vezes a covariância.

165 Nota sobre o planeamento do tempo lectivo Faltou-me esta matéria que obrigou a usar a aula 7. Para o ano será necessário reduzir um pouco a exposição para caber tudo nas 6 aulas 165

166 166 Exercício t2 Ex Um intermediário de legumes, quando encomenda desconhece o preço de aquisição e de venda dos legumes PC ~ N(0.50/kg, 0.10/kg). PV ~ N(0.60/kg, 0.15/kg). Tem que pagar 75 pelo transporte. A correlação linear entre o preço de compra e de venda é de 0.5 i) Determine qual vai ser o lucro de intermediar 1000kg de legumes. ii) Determine a probabilidade de ter prejuízo.

167 167 Exercício Trata-se de operações algébricas com variáveis aleatórias. Lucro = 1000(PV – PC) –75. PV – PC = N(0.60, 0.15) – N(0.50, 0.10) = N(0.10, ( (– 0.5) )) = N(0.10, ) Troca o sinal da correlação porque está a subtrair = *(-1)

168 168 Exercício 1000 N(0.10, 0.132) = N(100, 132.3) N(100, 132.3) –75 = N(25, 132.3) No Excel, =NORMDIST(0; 25; 132.3;TRUE) Tem 42.5% de probabilidade de ter prejuízo

169 169 Exercício Ex Duas acções, com rentabilidades X ~ N(5%; 5%)/ano e Y ~ N(10%, 7%)/ano e com correlação linear de Determine a rentabilidade de uma carteira com a proporção 0.5 de X e 0.5 de Y.

170 170 Exercício Z = 0.5X+0.5Y (Z) = (0.5X)+ (0.5Y) = 0.5 (X)+ 0.5 (Y) = 0.5x5%+ 0.5x10% = 7.5%/ano

171 171 Exercício Z = 0.5X + 0.5Y 2 (Z) = 2 (0.5X) + 2 (0.5X, 0.5Y) + 2 (0.5Y) = (0.5x5%) 2 + 2x0.25x0.5x(0.5x5%)x(0.5x7%) + (0.5x7%) 2 =0, (Z) = 4.78%

172 172 Extensão à soma de N variáveis Se eu somar três variáveis, posso fazer X+(Y+Z) E retiro que 2 (X+Y+Z) = = 2 (X)+ 2 (Y)+ 2 (Z) + 2 (X,Y)+2 (X,Z) +2 (Y,Z) Facilmente estendo para N

173 173 Extensão à soma de N variáveis Ex Uma empresa pretende lançar o seu produto em novos mercados. Moscovo tem custo Cm N(3, 0.5) e resultado actualizado das vendas Vm N(7, 1) São Petersburgo tem custo Csp N(2, 0.6) e resultado actualizado das vendas Vsp N(6, 2). O lucro resulta de subtrair os custos ao resultado actualizado das vendas,

174 174 Extensão à soma de N variáveis Os coeficiente de correlação linear são CmCspVmVsp Cm Csp Vm Vsp

175 175 Extensão à soma de N variáveis i) Determine o lucro da representação de Moscovo e de São Petersburgo (separadas). ii) Determine o lucro de abertura das duas representações (em conjunto).

176 176 Extensão à soma de N variáveis i) Lucro da representação (separadas). Lm = Vm – Cm = N(7; 1) – N(3; 0.5) = N(4, ( (-0.5) )) = N(4, 0.866) Lsp = Vsp–Csp = N(6; 2) – N(2; 0.6) = N(4, ( (-0.5) )) = N(4, 1.778)

177 177 Extensão à soma de N variáveis i) Lucro das representações juntas. Lm = Vm – Cm + Vsp–Csp = N(7; 1) – N(3; 0.5) + N(6; 2) – N(2; 0.6) = N(8, ( )) = N(8, 2.59) Para simplificar, só tenho 3 correlações diferentes de zero.

178 178 Exercício Ex Um seguro de trabalho cobra um prémio de 6/ano e obriga a seguradora a constituir como reservas F(4.91; )/ano. i) Supondo que os acidentes não estão correlacionados, determine o lucro por trabalhador de segurar 1, 100 trabalhadores e 1000trabalhadores.

179 179 Exercício L 1 = P-R = 6- F(4.91; ) = F(1.09; )/ano L 100 /100 = (L 1 +L 1 + … + L 1 )/100 = = N(109; (100* ))/100 = N(1.09;16,67) /ano L 1000 /100 = (L 1 +L 1 + … + L 1 )/1000 = = N(1090; (1000* ))/1000 = N(1.09;5,27) /ano

180 180 Exercício ii) Supondo que quando há um acidente é provável que morra mais que um trabalhador. Assim, recalcule o lucro por trabalhador com a correlação entre as fatalidades assumida como 0.1

181 181 Exercício

182 182 Exercício Quanto menos correlacionados estiverem os acontecimentos e maior número de acontecimentos misturarmos, maior será a diminuição do risco e mais a função distribuição resultante se aproxima da função distribuição normal.

183 183 Exercício Ex O Seguro de Invalidez, ex.2.21, obriga a F(7.27, )/mês de reservas por cada 500/mês de indemnização. O prémio será o valor médio das reservas mais o desvio padrão. Supondo que a invalidez dos trabalhadores não está correlacionada, determine o prémio em função do tamanho da carteira de seguros.

184 184 Exercício n = 100 P = 42.44/mês; n = 1000 P = 18.39/mês; n = P = 10.79/mês.

185 185 Diversificação do risco e avaliação de projectos A diversificação do risco pode tornar aceitáveis investimentos que avaliados de forma independente não seriam rentáveis (e.g., terem um VAL negativo). Isso acontece quando o investimento tem uma correlação negativa com outros investimentos o que permite diminuir o risco do conjunto dos investimentos.

186 186 Diversificação do risco e avaliação de projectos Ex Uma investidora tem a possibilidade de adquirir uma participação 1. C. de golfe com q =N(1.2; 0.2) 2. Emp. agrícola com q = N(0.9; 0.45). Dá prejuízo A correlação entre os negócios é de –0.9 Qual a proporção do investimento que minimiza a probabilidade de ter prejuízo.

187 187 Exercício D2: =DIST.NORM(1; B2; C2; VERDADEIRO) E3: =1-E2 C5: =(E2*C2)^2+2*C2*E2*C3*E3*C4+(C3*E3)^2 B6: =E2*B2+E3*B3C6: =C5^0,5

188 188 Diversificação do risco e avaliação de projectos Fiz um modelo no Excel e utilizei o solver para minimizar o risco. Contra a lógica da análise individual, aplicando 27% do investimento na empresa não rentável e com risco elevado o meu risco de ter prejuízo diminui de 18.87% para 3.22%. Reparar nas duas restrições do solver.

189 189 Alavancagem Em termos patrimoniais, uma empresa pode ser dividida num conjunto de destinos financeiros (os activos da empresa que têm determinada rentabilidade e podem ser recuperados) e um conjugo de origens financeiras (os passivos da empresa que têm que ser remunerados e devolvidos).

190 190 Alavancagem Em termos contabilísticos, o valor de cada unidade de participação (i.e., cada acção ou cota) será a soma dos activos menos a soma dos passivos alheios (o capital alheio) a dividir pelo número de acções ou cotas que representam a empresa.

191 191 Alavancagem

192 192 Alavancagem A diversificação do risco trata da gestão do risco na parte do activo (e.g., das aplicações financeiras) A alavancagem trata da gestão do risco na parte do passivo (i.e., das origens dos recursos financeiros). –A proporção entre capitais próprios e alheios.

193 193 Alavancagem Os capitais próprios têm voto na condução da empresa enquanto que os capitais alheios não. Em tese, as obrigações não têm risco porque, na liquidação, são pagas antes dos capitais próprios Se a proporção de capitais próprios for pequena, as obrigações vêm o risco aumentado, exigindo o mercado uma taxa de juro maior.

194 194 Exercício Um projecto de investimento a 10 anos necessita de 10M de financiamento num projecto com uma rentabilidade R ~ N(15%, 15%)/ano. Para uma relação de alavancagem de 4 para 1 (i.e., detém 2.5M de acções e emite 7.5M de obrigações a uma taxa de juro fixa de 10%/ano) Determine o efeito da alavancagem na rentabilidade e risco dos capitais próprios.

195 195 Exercício A rentabilidade média e o risco dos capitais próprios aumentam.


Carregar ppt "1 Calculo e Instrumentos Financeiros Parte 2 Faculdade de Economia da Universidade do Porto 2012/2013."

Apresentações semelhantes


Anúncios Google