A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

OTIMIZAÇÃO DA SOLUÇÃO DA EQUAÇÃO DE LAPLACE 2D COM MULTIGRID GEOMÉTRICO, COM E SEM ANISOTROPIA GEOMÉTRICA DOUTORANDA: Fabiane de Oliveira, M.Sc. ORIENTADOR:

Apresentações semelhantes


Apresentação em tema: "OTIMIZAÇÃO DA SOLUÇÃO DA EQUAÇÃO DE LAPLACE 2D COM MULTIGRID GEOMÉTRICO, COM E SEM ANISOTROPIA GEOMÉTRICA DOUTORANDA: Fabiane de Oliveira, M.Sc. ORIENTADOR:"— Transcrição da apresentação:

1 OTIMIZAÇÃO DA SOLUÇÃO DA EQUAÇÃO DE LAPLACE 2D COM MULTIGRID GEOMÉTRICO, COM E SEM ANISOTROPIA GEOMÉTRICA DOUTORANDA: Fabiane de Oliveira, M.Sc. ORIENTADOR: Carlos Henrique Marchi, Dr. Eng. CO-ORIENTADOR: Marcio Augusto Villela Pinto, Dr. Sc. Programa de Pós-graduação em Engenharia Mecânica PG-MEC - UFPR Curitiba – 17/04/2008 1º SEMINÁRIO DO PROJETO MULTIGRID OTIMIZAÇÃO DO MÉTODO MULTIGRID PARA PROBLEMAS DE MECÂNICA COMPUTACIONAL

2 2 DADOS COMPUTACIONAIS Hardware: Máquina: CFD7 do LENA 1; Processador Core2 Duo; 2.66 GHz e 8 GB de RAM; Software: Linguagem: FORTRAN/95; Versão 9.1 INTEL; Projeto console – release Precisão dupla, Windows xp 64 bits;

3 3 DADOS DO MODELO MATEMÁTICO E NUMÉRICO Equação de Laplace; Condições de contorno de Dirichlet; Discretização: Método das diferenças finitas; Aproximação: CDS.

4 4 DADOS DO MULTIGRID Algoritmo: Full Approximation Scheme (FAS); Restrição: Injeção, meia ponderação, ponderação completa; Prolongação: Interpolação bilinear; Solver: MSI, Gauss-Seidel e ADI; Malhas uniformes e malhas anisotrópicas; Razão de engrossamento: r = 2; Razões de aspecto: 4, 16, 1024, 4096, entre outras.

5 5 EQUAÇÃO GOVERNANTE Equação de Laplace 2D

6 6 OTIMIZAÇÃO DO ITI E DOS ROTEIROS Malhas uniformes; Roteiros: ITI totalmente constante; ITI dinâmico; ITI constante na restrição e na prolongação; Dente-de-serra; Hortmann.

7 7 ITI TOTALMENTE CONSTANTE Figura: ITI totalmente constante para ITI = 4 e L = 6

8 8 ITI TOTALMENTE CONSTANTE O número ótimo de iterações internas é igual a 3; Dado um N, o uso de poucos níveis conduz a um maior tempo de CPU; O número ótimo de níveis é igual ao número máximo; Um padrão de comportamento nos parâmetros estudados (número de iterações internas e número de níveis) pode ser determinado somente a partir de problemas de tamanho 129x129; Recomenda-se usar ITI = 3 e L = Lmax.

9 9 ITI DINÂMICO Figura: ITI dinâmico para L = 6

10 10 ITI DINÂMICO O número de iterações internas é maior na restrição do que na prolongação; O número de iterações internas na prolongação varia entre 1, 2 e 3; Na malha mais grossa o número de iterações internas é igual a 1; O cálculo do resíduo demanda muito tempo de CPU; O melhor algoritmo obtido para iti dinâmico foi com o uso de uma tolerância interna de 0,01. Tolerâncias internas muito pequenas fazem com que o número de iterações internas seja muito alto e em conseqüência aumente o tempo de CPU, por outro lado tolerâncias internas grandes reduzem demasiadamente o número de iterações internas, aumentando o número de ciclos e consequentemente também o tempo computacional.

11 11 ITI DINÂMICO X ITI CONSTANTE Figura : Tempo de CPU x N

12 12 ITI CONSTANTE NA RESTRIÇÃO E NA PROLONGAÇÃO Figura: ITI totalmente constante na restrição e na prolongação

13 13 ITI CONSTANTE NA RESTRIÇÃO E NA PROLONGAÇÃO Para os problemas testados a soma do número de iterações internas para a restrição e prolongação é igual a 6; Iti_p = 3 com iti_r = 3 é melhor entre os algoritmos de iti_p e iti_r fixos.

14 ALGORITMO DE HORTMANN E SUAS VARIAÇÕES

15 15 HORTMANN Figura: Hortmann para L = 6

16 16 HORTMANN MODIFICADO Figura: Hortmann modificado para L = 6

17 17 HORTMANN MODIFICADO INVERSO Figura: Hortmann modificado para L = 6

18 18 HORTMANN MODIFICADO COM ITI_P CONSTANTE Figura: Hortmann modificado variando iti_p para L = 6

19 19 HORTMANN E SUAS VARIAÇÕES Figura : Tempo de CPU x N

20 DENTE DE SERRA E SUAS VARIAÇÕES

21 21 DENTE DE SERRA TIPO I Figura: Dente-de-serra (tipo I) para L = 6

22 22 DENTE DE SERRA TIPO II Figura: Dente-de-serra (tipo II) para L = 6

23 23 DENTE DE SERRA TIPO II MODIFICADO Figura: Dente-de-serra (tipo II) modificado para L = 6

24 24 COMPARAÇÕES ENTRE OS ALGORTIMOS Figura : Tempo de CPU x N

25 25 COMPARAÇÕES ENTRE OS ALGORTIMOS Figura : Tempo de CPU x N

26 26 ITI TOTALMENTE CONSTANTE SOLVERS Figura : Tempo de CPU x N

27 27 ITI TOTALMENTE CONSTANTE TIPOS DE RESTRIÇÃO Figura : Tempo de CPU x N

28 28 ANISOTROPIA Analisar diversos tipos de anisotropia geométrica; Propor um método que otimize a convergência do multigrid em problemas anisotrópicos.

29 29 ALGORITMOS Engrossamento padrão para o problema isotrópico; Engrossamento padrão para o problema anisotrópico; Semi-engrossamento (MULDER, 1989); Semi-engrossamento seguido de engrossamento padrão (ZHANG, 2002).

30 30 ANISOTROPIA TIPO I Figura: Anisotropia Tipo I

31 31 ANISOTROPIA TIPO II Figura: Anisotropia Tipo II

32 32 ANISOTROPIA TIPO III Figura: Anisotropia Tipo III

33 33 ANISOTROPIA TIPO IV Figura: Anisotropia Tipo IV

34 34 RESULTADOS ESPERADOS Reduzir significativamente o tempo de CPU necessário para resolver a equação de Laplace bidimensional em malhas estruturadas uniformes e uniformes por direção com alta razão de aspecto; Estabelecer um procedimento com o intuito de aumentar a taxa de convergência em problemas com anisotropia geométrica, diminuindo desta forma o tempo de CPU.


Carregar ppt "OTIMIZAÇÃO DA SOLUÇÃO DA EQUAÇÃO DE LAPLACE 2D COM MULTIGRID GEOMÉTRICO, COM E SEM ANISOTROPIA GEOMÉTRICA DOUTORANDA: Fabiane de Oliveira, M.Sc. ORIENTADOR:"

Apresentações semelhantes


Anúncios Google