1 1 MOS Field-Effect Transistors (MOSFETs)‏ Transistor de Efeito de Campo Metal-Óxido Semicondutor.

Slides:



Advertisements
Apresentações semelhantes
Fundamentos de Electrónica
Advertisements

semicondutores TEORIA DA MASSA EFETIVA ESTATÍSTICA DE PORTADORES
Comportamento de um transistor MOS - NMOS
Circuitos Lógicos e Organização de Computadores Capítulo 3 – Tecnologia de Implementação Ricardo Pannain
12 Modelos doTransistor MOS Concepção de Circuitos Integrados
MC542 Organização de Computadores Teoria e Prática
MC542 Organização de Computadores Teoria e Prática
Trocadores de Calor Prof. Gerônimo.
Fundamentos da teoria dos semicondutores Faixas de energia no cristal semicondutor. Estatística de portadores em equilíbrio. Transporte de portadores.
Vetor da rede recíproca.
Uniform Resource Identifier (URI). Uniform Resource Identifiers Uniform Resource Identifiers (URI) ou Identificador de Recursos Uniforme provê um meio.
Fundamentos de Eletrônica Digital
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 3 Harmonic.
Transistor de Efeito de Campo MOS (MOSFET) – Parte I
Prof. Marcelo de Oliveira Rosa
PSI 2223 – Introdução à Eletrônica Programação para a Terceira Prova
PSI 2223 – Introdução à Eletrônica Programação para a Terceira Prova
The Coherent FinFET Prof. Carlo Requião da Cunha, Ph.D.
Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 1 Adaptive & Array Signal Processing AASP Prof. Dr.-Ing. João Paulo C. Lustosa.
Instrumentos analógicos de medida directa em corrente alterna (cont.)
Lecture 4 Pressure distribution in fluids. Pressure and pressure gradient. Hydrostatic pressure 1.
IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, Chapter 8: Procedure.
Fundamentos da teoria dos semicondutores
Cigré/Brasil CE B5 – Proteção e Automação Seminário Interno de Preparação para o Colóquio de Madri 2007 Rio de Janeiro, outubro/07.
Simplificação dos Modelos i* Trabalho de Fernanda Alencar Clarissa César Borba.
Pontifícia Universidade Católica do Rio Grande do Sul Departamento de Engenharia Elétrica Fernando Soares dos Reis Didactic Platform for Power Electronics.
MAC Engenharia de Software Marco A. GerosaIME / USP Mais sobre análise e Outros Diagramas UML MAC0332 Engenharia de Software Marco Aurélio Gerosa.
Germano Maioli Penello
1 Eletrônica II Germano Maioli Penello Aula 05 II_ html.
1 Eletrônica II Germano Maioli Penello Aula 06 II _ html.
Eletrônica II Germano Maioli Penello Aula 01
Germano Maioli Penello
Limit Equlibrium Method. Limit Equilibrium Method Failure mechanisms are often complex and cannot be modelled by single wedges with plane surfaces. Analysis.
Universidade de Brasília Laboratório de Processamento de Sinais em Arranjos 1 Adaptive & Array Signal Processing AASP Prof. Dr.-Ing. João Paulo C. Lustosa.
Transistor de Efeito de Campo
Mecânica de Fluidos Ambiental 2015/2016
Chapter 7 DC Machines Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for presentation or display 6/1/2016DC Machines1.
Abril 2016 Gabriel Mormilho Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo Departamento de Administração EAD5853 Análise.
Eletrônica II Germano Maioli Penello Aula 01
Part I Object of Plasma Physics BACK. I. Object of Plasma Physics 1. Characterization of the Plasma State 2. Plasmas in Nature 3. Plasmas in the Laboratory.
Year Automation Conference 2015 Increase pressure for costs reduction - How much? Marcos Assialdi HBR / TGEx.
Metodologia de projeto de LNA para Receptor de RADAR
Germano Maioli Penello
Discussão dos artigos que couberam ao LEO
Germano Maioli Penello
Visão geral do Aprendizado de máquina
Muões como sondas microscópicas em sólidos
SEL0317 – Lab de Circuitos Eletrônicos II
Digital Integrated Circuits A Design Perspective
Tecnologia CMOS Complementary Metal Oxide Semiconductor
Germano Maioli Penello
TENSÕES NORMAIS EM VIGAS
2nd IAEE Eurasian Conference
Germano Maioli Penello
A Junção PN Site original:
CMOS Logic-Gate Circuits
Teoria de Onda Viajantes
TQS - Teste e Qualidade de Software (Software Testing and Quality) Geração Automática de Casos de Teste com a Ferramenta.
Submetendo a Periódicos
IE733 – Prof. Jacobus Cap. 5 Transistores MOS com canal implantado. (parte 2)
Three analogies to explain reactive power Why an analogy? Reactive power is an essential aspect of the electricity system, but one that is difficult to.
EAP,natural de Birigui,SP 49 anos, casado. Transplantado renal há 22 a
2º ENCONTRO UAB-UFPA (Polo Barcarena)
Adição e Multiplicação
Eletrônica MOS-CMOS (introdução)
Hydrodynamic of paste drying using glass beads in fluidized bed from Gaussian spectral analysis Flavia Tramontin Silveira Schaffka 1, Jhon Jairo Ramirez.
Copyright ©2011 by Pearson Education, Inc. publishing as Pearson [imprint] Introductory Circuit Analysis, 12/e Boylestad Chapter 11 Inductors.
Introduction to density estimation Modelação EcoLÓGICA
Pesquisadores envolvidos Recomenda-se Arial 20 ou Times New Roman 21.
EFBOND™ Adhesives © Copyright EFTEC - North America, L.L.C. 1 E F T E CT E C H N O L O G I E S Product: EF 4400 Application: Battery Assembly Form: Slats.
Transcrição da apresentação:

1 1 MOS Field-Effect Transistors (MOSFETs)‏ Transistor de Efeito de Campo Metal-Óxido Semicondutor

2 MOSFETs: Tipos ● Tipo enriquecimento (ou indução) – Canal N – Canal P ● Tipo empobrecimento (ou depleção) – Canal N – Canal P

3 Estrutura física MOSFET tipo enriquecimento canal N

4 Tensão positiva aplicada à porta de um MOSFET tipo enriquecimento.

5 Transístor MOSFET com v GS > V t e com v DS. O dispositivo se comporta como um resistor controlado por tensão ( v GS )

6 Características i D – v DS do MOSFET como resistor controlado por tensão.

7 Operação do MOSFET com v DS alto. O canal começa a adquirir uma forma de estrangulamento próximo ao dreno. A resistência do dispositivo aumenta com o aumento de v DS, para um v GS constante e maior que V t.

8 O efeito do aumento de v DS: : o canal vai se estrangulando perto do dreno. Com v DS acima de v GS – V t, o aumento da tensão de dreno praticamente não causa mais efeito.

9 i D versus v DS com v GS > V t.

10 MOSFET tipo enriquecimento. Símbolos

11 Regiões de operação.

12 Regiões de operação. Região de corte Região triodo Região de saturação

13 Característica i D – v GS de um MOSFET canal N tipo enriquecimento.

14 Modelo para grandes sinais na região de saturação.

15 Níveis de tensão dos terminais de um MOSFET canal N tipo enriquecimento e suas regiões de operação. Regiões de Operação

16 O efeito da modulação de comprimento de canal

17 Equações do MOSFET canal N

18 Modelo para grandes sinais

19 MOSFET Tipo Enriquecimento Canal P Símbolos

20 Polarização

21 Regiões de Operação

22 Equações do MOSFET Canal P

23 MOSFET tipo enriquecimento: canais N e P

24 Parâmetros dos MOSFETs

25 Figure E4.8

26 Figure 4.20 Circuit for Example 4.2.

27 Figure 4.21 Circuit for Example 4.3.

28 Figure E4.12

29 Figure 4.22 Circuit for Example 4.4.

30 Figure 4.23 (a) Circuit for Example 4.5. (b) The circuit with some of the analysis details shown.

31 Figure 4.24 Circuit for Example 4.6.

32 Figure 4.25 Circuits for Example 4.7.

33 Figure E4.16

34 Figure 4.26 (a) Basic structure of the common-source amplifier. (b) Graphical construction to determine the transfer characteristic of the amplifier in (a).

35 Figure 4.26 (Continued) (c) Transfer characteristic showing operation as an amplifier biased at point Q.

36 Figure 4.27 Two load lines and corresponding bias points. Bias point Q 1 does not leave sufficient room for positive signal swing at the drain (too close to V DD ). Bias point Q 2 is too close to the boundary of the triode region and might not allow for sufficient negative signal swing.

37 Figure 4.28 Example 4.8.

38 Figure 4.28 (Continued)‏

39 Figure 4.29 The use of fixed bias (constant V GS ) can result in a large variability in the value of I D. Devices 1 and 2 represent extremes among units of the same type.

40 Figure 4.30 Biasing using a fixed voltage at the gate, V G, and a resistance in the source lead, R S : (a) basic arrangement; (b) reduced variability in I D ; (c) practical implementation using a single supply; (d) coupling of a signal source to the gate using a capacitor C C1 ; (e) practical implementation using two supplies.

41 Figure 4.31 Circuit for Example 4.9.

42 Figure 4.32 Biasing the MOSFET using a large drain-to-gate feedback resistance, R G.

43 Figure 4.33 (a) Biasing the MOSFET using a constant-current source I. (b) Implementation of the constant-current source I using a current mirror.

44 Figure 4.34 Conceptual circuit utilized to study the operation of the MOSFET as a small-signal amplifier.

45 Figure 4.35 Small-signal operation of the enhancement MOSFET amplifier.

46 Figure 4.36 Total instantaneous voltages v GS and v D for the circuit in Fig

47 Figure 4.37 Small-signal models for the MOSFET: (a) neglecting the dependence of i D on v DS in saturation (the channel-length modulation effect); and (b) including the effect of channel-length modulation, modeled by output resistance r o = |V A | /I D.

48 Figure 4.38 Example 4.10: (a) amplifier circuit; (b) equivalent-circuit model.

49 Figure 4.39 Development of the T equivalent-circuit model for the MOSFET. For simplicity, r o has been omitted but can be added between D and S in the T model of (d).

50 Figure 4.40 (a) The T model of the MOSFET augmented with the drain-to-source resistance r o. (b) An alternative representation of the T model.

51 Figure 4.41 Small-signal equivalent-circuit model of a MOSFET in which the source is not connected to the body.

52 Table 4.2

53 Figure 4.42 Basic structure of the circuit used to realize single-stage discrete-circuit MOS amplifier configurations.

54 Figure E4.30

55 Table 4.3

56 Figure 4.43 (a) Common-source amplifier based on the circuit of Fig (b) Equivalent circuit of the amplifier for small-signal analysis. (c) Small-signal analysis performed directly on the amplifier circuit with the MOSFET model implicitly utilized.

57 Figure 4.44 (a) Common-source amplifier with a resistance R S in the source lead. (b) Small-signal equivalent circuit with r o neglected.

58 Figure 4.45 (a) A common-gate amplifier based on the circuit of Fig (b) A small-signal equivalent circuit of the amplifier in (a). (c) The common-gate amplifier fed with a current-signal input.

59 Figure 4.46 (a) A common-drain or source-follower amplifier. (b) Small-signal equivalent-circuit model. (c) Small-signal analysis performed directly on the circuit. (d) Circuit for determining the output resistance R out of the source follower.

60 Table 4.4

61 Table 4.4 (Continued)‏

62 Figure 4.47 (a) High-frequency equivalent circuit model for the MOSFET. (b) The equivalent circuit for the case in which the source is connected to the substrate (body). (c) The equivalent circuit model of (b) with C db neglected (to simplify analysis).

63 Figure 4.48 Determining the short-circuit current gain I o /I i.

64 Table 4.5

65 Figure 4.49 (a) Capacitively coupled common-source amplifier. (b) A sketch of the frequency response of the amplifier in (a) delineating the three frequency bands of interest.

66 Figure 4.50 Determining the high-frequency response of the CS amplifier: (a) equivalent circuit; (b) the circuit of (a) simplified at the input and the output;

67 Figure 4.50 (Continued) (c) the equivalent circuit with C gd replaced at the input side with the equivalent capacitance C eq ; (d) the frequency response plot, which is that of a low-pass single-time-constant circuit.

68 Figure 4.51 Analysis of the CS amplifier to determine its low-frequency transfer function. For simplicity, r o is neglected.

69 Figure 4.52 Sketch of the low-frequency magnitude response of a CS amplifier for which the three break frequencies are sufficiently separated for their effects to appear distinct.

70 Figure 4.53 The CMOS inverter.

71 Figure 4.54 Operation of the CMOS inverter when v I is high: (a) circuit with v I = V DD (logic-1 level, or V OH ); (b) graphical construction to determine the operating point; (c) equivalent circuit.

72 Figure 4.55 Operation of the CMOS inverter when v I is low: (a) circuit with v I = 0 V (logic-0 level, or V OL ); (b) graphical construction to determine the operating point; (c) equivalent circuit.

73 Figure 4.56 The voltage transfer characteristic of the CMOS inverter.

74 Figure 4.57 Dynamic operation of a capacitively loaded CMOS inverter: (a) circuit; (b) input and output waveforms; (c) trajectory of the operating point as the input goes high and C discharges through Q N ; (d) equivalent circuit during the capacitor discharge.

75 Figure 4.58 The current in the CMOS inverter versus the input voltage.

76 Figure 4.59 (a) Circuit symbol for the n-channel depletion-type MOSFET. (b) Simplified circuit symbol applicable for the case the substrate (B) is connected to the source (S).

77 Figure 4.60 The current-voltage characteristics of a depletion-type n-channel MOSFET for which V t = –4 V and k n (W/L) = 2 mA/V 2 : (a) transistor with current and voltage polarities indicated; (b) the i D – v DS characteristics; (c) the i D – v GS characteristic in saturation.

78 Figure 4.61 The relative levels of terminal voltages of a depletion-type NMOS transistor for operation in the triode and the saturation regions. The case shown is for operation in the enhancement mode ( v GS is positive).

79 Figure 4.62 Sketches of the i D – v GS characteristics for MOSFETs of enhancement and depletion types, of both polarities (operating in saturation). Note that the characteristic curves intersect the v GS axis at V t. Also note that for generality somewhat different values of |V t | are shown for n-channel and p-channel devices.

80 Figure E4.51

81 Figure E4.52

82 Figure 4.63 Capture schematic of the CS amplifier in Example 4.14.

83 Figure 4.64 Frequency response of the CS amplifier in Example 4.14 with C S = 10  F and C S = 0 (i.e., C S removed).

84 Figure P4.18

85 Figure P4.33

86 Figure P4.36

87 Figure P4.37

88 Figure P4.38

89 Figure P4.41

90 Figure P4.42

91 Figure P4.43

92 Figure P4.44

93 Figure P4.45

94 Figure P4.46

95 Figure P4.47

96 Figure P4.48

97 Figure P4.54

98 Figure P4.61

99 Figure P4.66

100 Figure P4.74

101 Figure P4.75

102 Figure P4.77

103 Figure P4.86

104 Figure P4.87

105 Figure P4.88

106 Figure P4.97

107 Figure P4.99

108 Figure P4.101

109 Figure P4.104

110 Figure P4.117

111 Figure P4.120

112 Figure P4.121

113 Figure P4.123