Biologia Molecular, revisão do conteúdo

Slides:



Advertisements
Apresentações semelhantes
Estrutura do DNA.
Advertisements

Amplificação (clonagem) dos genes e seu armazenamento
BIBLIOTECAS DE DNA ou BANCOS DE DNA FABIANA SEIXAS
Sequenciamento de DNA em MegaBACE DNA Analysis Systems
Estrutura e função do RNA
DNA – ESTRUTURA, FUNÇÃO E REPLICAÇÃO
Replicação da molécula de DNA
Síntese Protéica - Tradução
Construção de uma Biblioteca
Genética Molecular: o que vamos estudar?
ESTRUTURA E ANÁLISE DO DNA
Genética bacteriana.
Ácidos Nucléicos.
Construção de Biblioteca Gênica
Prof. Odir A. Dellagostin
MATERIAL GENÉTICO E SÍNTESE DE PROTEÍNA
Introdução à expressão gênica
Felipe Rodrigues da Silva Embrapa Recursos Genéticos e Biotecnologia
Genética Geral II Prof. Dr. Ricardo Lehtonen R. de Souza
Genômica É a caracterização de genomas inteiros. Tenta compreender a organização molecular e as informações que ela traz.
DNA e RNA.
Biomoléculas e a Base Molecular da Vida
A técnica da Eletroforese para a análise de DNA e proteínas
Ácidos nucleicos.
Ácidos Nucléicos.
Genômica funcional e metagenômica
ÁCIDO DESOXIRRIBONUCLEICO
ÁCIDOS NUCLEICOS.
A ORGANIZAÇÃO DO MATERIAL GENÉTICO
Aula 10 – Ácidos Nucléicos
Replicação, transcrição e tradução
CITOGENÉTICA - os ácidos nucleicos -
ESTRUTURA DO GENOMA HUMANO
Metabolismo de controle: síntese de proteínas
Profa. Ana Paula Miranda Guimarães
PLANTAS TRANSGÊNICAS: DE ONDE VEM, PARA AONDE VÃO?
A genética e os genes.
Biologia Molecular Professora Ana Carolina.
Código genético e síntese protéica.
Estrutura dos Ácidos Nucléicos, Replicação e Transcrição
E.E.E.M. ADOLFO FETTER Ácidos Nucleicos.
RNA faz a ponte entre as informações do DNA e a síntese de proteínas. mRNA é o mensageiro que carrega as informações do DNA (núcleo da célula) para o.
GENÉTICA Aula 7: Fundamentos das Tecnologias do DNA Recombinante
ESTRUTURA; Replicação; Transcrição;
Estrutura e função de ácidos nucleicos, Replicação de DNA, transcrição e processamento de RNA, expressão gênica.
ÁCIDOS NUCLÉICOS São polímeros de nucleotídeos, sendo estes formados por uma base nitrogenada, um grupamento fosfato e uma pentose( açúcar de 5 carbonos).
TECNOLOGIA DO DNA RECOMBINANTE
A INFORMAÇÃO ADQUIRE FORMA BIOLÓGICA PROFA. GISELLE MOURA MESSIAS
NÚCLEO CELULAR.
Sequenciamento de Genomas
Síntese de DNA Síntese de oligonucleotídeos
Duplicação, replicação ou síntese do DNA
Biologia Código Genético e Síntese Protéica Código Genético
ÁCIDOS NUCLÉICOS.
Ação Gênica.
Replicação do DNA Vera Andrade.
Dogma Central da Biologia Molecular
FERRAMENTAS DE ANÁLISE MOLECULAR
Introdução à Biologia Molecular
Ácidos nucléicos Prof. Dr. Luis Fernando Marins
Transferência da Informação Biológica
Dogma central da biologia molecular
Genética A genética é a parte da biologia que estuda a passagem das características biológicas e físicas de geração para geração. Os cientistas acreditam.
Dogma Central da Biologia Molecular
DNA / RNA Ácido Desoxirribonucleico Ácido Ribonucleico
CITOGENÉTICA.
EXPRESSÃO GÊNICA.
Vetores de entrada para clonagem gênica Os plasmídios devem possuir uma região designada origem de replicação (ORI), que é essencial para a sua replicação.
PCR Polymerase Chain Reaction
DNA. histórico Pensava-se: proteínas possuíam o material genético. A partir de 1950: ácidos nucléicos possuíam o material genético Nas células procarióticas,
Transcrição da apresentação:

Biologia Molecular, revisão do conteúdo Prof Francisco Prosdocimi

ÁCIDOS NUCLEICOS DNA, RNA Armazenamento da informação genética Polímeros de nucleotídeos

DNA E RNA Polímeros de nucleotídeos Esqueleto de ribose-fosfato ligado às bases nitrogenadas

REPLICAÇÃO DO DNA O DNA é composto por uma dupla-hélice Replicação semi-conservativa: as bases presentes em uma das fitas contém toda a informação necessária para a síntese da nova fita A complementaridade das bases A = T, G = C As duas fitas do DNA são antiparalelas

EVOLUÇÃO POR MUTAÇÕES A modificação das moléculas de DNA ao longo do tempo (mutação) é um dos principais fatores evolutivos

DOGMA CENTRAL E TRADUÇÃO

PROTEÍNAS Moléculas mais importantes? Polímeros de aminoácidos Apenas 20 diferentes aminoácidos estão presentes nas moléculas biológicas Carboxil Amino

AMINOÁCIDOS

LIGANDO AMINOÁCIDOS Onde acontece? Quem atua como catalisador?

ESTRUTURA DAS PROTEÍNAS Enovelamento de proteínas

HIERARQUIA ESTRUTURAL

ALFABETO QUÍMICO Todos os organismos vivos são constituídos a partir das mesmas unidades monoméricas A estrutura das macromoléculas é o que determina a sua função biológica Cada espécie apresenta um conjunto distinto de macromoléculas

O Sequenciamento de moléculas de DNA Prof. Dr. Francisco Prosdocimi >gi|33869444|gb|BC008730.2| Homo sapiens hexokinase 1, mRNA (cDNA clone MGC:1724 IMAGE:3163058), complete cds GGCTGCGGAGGACCGACCGTCCCCACGCCTGCCGCCCCGCGACCCCGACCGCCAGCATGATCGCCGCGCA GCTCCTGGCCTATTACTTCACGGAGCTGAAGGATGACCAGGTCAAAAAGATTGACAAGTATCTGTATGCC ATGCGGCTCTCCGATGAAACTCTCATAGATATCATGACTCGCTTCAGGAAGGAGATGAAGAATGGCCTCT CCCGGGATTTTAATCCAACAGCCACAGTCAAGATGTTGCCAACATTCGTAAGGTCCATTCCTGATGGCTC TGAAAAGGGAGATTTCATTGCCCTGGATCTTGGTGGGTCTTCCTTTCGAATTCTGCGGGTGCAAGTGAAT CATGAGAAAAACCAGAATGTTCACATGGAGTCCGAGGTTTATGACACCCCAGAGAACATCGTGCACGGCA GTGGAAGCCAGCTTTTTGATCATGTTGCTGAGTGCCTGGGAGATTTCATGGAGAAAAGGAAGATCAAGGA CAAGAAGTTACCTGTGGGATTCACGTTTTCTTTTCCTTGCCAACAATCCAAAATAGATGAGGCCATCCTG ATCACCTGGACAAAGCGATTTAAAGCGAGCGGAGTGGAAGGAGCAGATGTGGTCAAACTGCTTAACAAAG(...) TGACAGGCCTTCTGGGCCTCCAAAGCCCATCCTTGGGGTTCCCCCTCCCTGTGTGAAATGTATTATCACC AGCAGACACTGCCGGGCCTCCCTCCCGGGGGCACTGCCTGAAGGCGAGTGTGGGCATAGCATTAGCTGCT TCCTCCCCTCCTGGCACCCACTGTGGCCTGGCATCGCATCGTGGTGTGTCAATGCCACAAAATCGTGTGT CCGTGGAACCAGTCCTAGCCGCGTGTGACAGTCTTGCATTCTGTTTGTCTCGTGGGGGGAGGTGGACAGT CCTGCGGAAATGTGTCTTGTCTCCATTTGGATAAAAGGAACCAACCAACAAACAATGCCATCACTGGAAT TTCCCACCGCTTTGTGAGCCGTGTCGTATGACCTAGTAAACTTTGTACCAATTCAAAAAAAAAAAAAAAAAA

Bioquímica + Biomol Enzimas são proteínas, portanto: São formadas por sequências de aminoácidos Derivam de informações dispostas por genes no DNA, que deve ser transcrito e, posteriormente, traduzido Podemos saber a sequência delas, tanto de aminoácidos quanto de nucleotídeos

>gi|188497753|ref|NM_000188.2| Homo sapiens hexokinase 1 (HK1), nuclear gene encoding mitochondrial protein, transcript variant 1, mRNA GAGGAGGAGCCGCCGAGCAGCCGCCGGAGGACCACGGCTCGCCAGGGCTGCGGAGGACCGACCGTCCCCA CGCCTGCCGCCCCGCGACCCCGACCGCCAGCATGATCGCCGCGCAGCTCCTGGCCTATTACTTCACGGAG CTGAAGGATGACCAGGTCAAAAAGATTGACAAGTATCTCTATGCCATGCGGCTCTCCGATGAAACTCTCA TAGATATCATGACTCGCTTCAGGAAGGAGATGAAGAATGGCCTCTCCCGGGATTTTAATCCAACAGCCAC AGTCAAGATGTTGCCAACATTCGTAAGGTCCATTCCTGATGGCTCTGAAAAGGGAGATTTCATTGCCCTG GATCTTGGTGGGTCTTCCTTTCGAATTCTGCGGGTGCAAGTGAATCATGAGAAAAACCAGAATGTTCACA TGGAGTCCGAGGTTTATGACACCCCAGAGAACATCGTGCACGGCAGTGGAAGCCAGCTTTTTGATCATGT TGCTGAGTGCCTGGGAGATTTCATGGAGAAAAGGAAGATCAAGGACAAGAAGTTACCTGTGGGATTCACG TTTTCTTTTCCTTGCCAACAATCCAAAATAGATGAGGCCATCCTGATCACCTGGACAAAGCGATTTAAAG CGAGCGGAGTGGAAGGAGCAGATGTGGTCAAACTGCTTAACAAAGCCATCAAAAAGCGAGGGGACTATGA TGCCAACATCGTAGCTGTGGTGAATGACACAGTGGGCACCATGATGACCTGTGGCTATGACGACCAGCAC TGTGAAGTCGGCCTGATCATCGGCACTGGCACCAATGCTTGCTACATGGAGGAACTGAGGCACATTGATC TGGTGGAAGGAGACGAGGGGAGGATGTGTATCAATACAGAATGGGGAGCCTTTGGAGACGATGGATCATT AGAAGACATCCGGACAGAGTTTGACAGGGAGATAGACCGGGGATCCCTCAACCCTGGAAAACAGCTGTTT GAGAAGATGGTCAGTGGCATGTACTTGGGAGAGCTGGTTCGACTGATCCTAGTCAAGATGGCCAAGGAGG GCCTCTTATTTGAAGGGCGGATCACCCCGGAGCTGCTCACCCGAGGGAAGTTTAACACCAGTGATGTGTC AGCCATCGAAAAGAATAAGGAAGGCCTCCACAATGCCAAAGAAATCCTGACCCGCCTGGGAGTGGAGCCG TCCGATGATGACTGTGTCTCAGTCCAGCACGTTTGCACCATTGTCTCATTTCGCTCAGCCAACTTGGTGG CTGCCACACTGGGCGCCATCTTGAACCGCCTGCGTGATAACAAGGGCACACCCAGGCTGCGGACCACGGT TGGTGTCGACGGATCTCTTTACAAGACGCACCCACAGTATTCCCGGCGTTTCCACAAGACTCTAAGGCGC TTGGTGCCAGACTCCGATGTGCGCTTCCTCCTCTCGGAGAGTGGCAGCGGCAAGGGGGCTGCCATGGTGA CGGCGGTGGCCTACCGCTTGGCCGAGCAGCACCGGCAGATAGAGGAGACCCTGGCTCATTTCCACCTCAC CAAGGACATGCTGCTGGAGGTGAAGAAGAGGATGCGGGCCGAGATGGAGCTGGGGCTGAGGAAGCAGACG CACAACAATGCCGTGGTTAAGATGCTGCCCTCCTTCGTCCGGAGAACTCCCGACGGGACCGAGAATGGTG ACTTCTTGGCCCTGGATCTTGGAGGAACCAATTTCCGTGTGCTGCTGGTGAAAATCCGTAGTGGGAAAAA GAGAACGGTGGAAATGCACAACAAGATCTACGCCATTCCTATTGAAATCATGCAGGGCACTGGGGAAGAG CTGTTTGATCACATTGTCTCCTGCATCTCTGACTTCTTGGACTACATGGGGATCAAAGGCCCCAGGATGC CTCTGGGCTTCACGTTCTCATTTCCCTGCCAGCAGACGAGTCTGGACGCGGGAATCTTGATCACGTGGAC AAAGGGTTTTAAGGCAACAGACTGCGTGGGCCACGATGTAGTCACCTTACTAAGGGATGCGATAAAAAGG AGAGAGGAATTTGACCTGGACGTGGTGGCTGTGGTCAACGACACAGTGGGCACCATGATGACCTGTGCTT ATGAGGAGCCCACCTGTGAGGTTGGACTCATTGTTGGGACCGGCAGCAATGCCTGCTACATGGAGGAGAT GAAGAACGTGGAGATGGTGGAGGGGGACCAGGGGCAGATGTGCATCAACATGGAGTGGGGGGCCTTTGGG GACAACGGGTGTCTGGATGATATCAGGACACACTACGACAGACTGGTGGACGAATATTCCCTAAATGCTG GGAAACAAAGGTATGAGAAGATGATCAGTGGTATGTACCTGGGTGAAATCGTCCGCAACATCTTAATCGA CTTCACCAAGAAGGGATTCCTCTTCCGAGGGCAGATCTCTGAGACGCTGAAGACCCGGGGCATCTTTGAG ACCAAGTTTCTCTCTCAGATCGAGAGTGACCGATTAGCACTGCTCCAGGTCCGGGCTATCCTCCAGCAGC TAGGTCTGAATAGCACCTGCGATGACAGTATCCTCGTCAAGACAGTGTGCGGGGTGGTGTCCAGGAGGGC CGCACAGCTGTGTGGCGCAGGCATGGCTGCGGTTGTGGATAAGATCCGCGAGAACAGAGGACTGGACCGT CTGAATGTGACTGTGGGAGTGGACGGGACACTCTACAAGCTTCATCCACACTTCTCCAGAATCATGCACC AGACGGTGAAGGAACTGTCACCAAAATGTAACGTGTCCTTCCTCCTGTCTGAGGATGGCAGCGGCAAGGG GGCCGCCCTCATCACGGCCGTGGGCGTGCGGTTACGCACAGAGGCAAGCAGCTAAGAGTCCGGGATCCCC AGCCTACTGCCTCTCCAGCACTTCTCTCTTCAAGCGGCGACCCCCTACCCTCCCAGCGAGTTGCGCTGGG AGACGCTGGCGCCAGGGCCTGCCGGCGCGGGGAGGAAAGCAAAATCCAACTAATGGTATATATTGTAGGG TACAGAATAGAGCGTGTGCTGTTGATAATATCTCTCACCCGGATCCCTCCTCACTTGCCCTGCCACTTTG CATGGTTTGATTTTGACCTGGTCCCCCACGTGTGAAGTGTAGTGGCATCCATTTCTAATGTATGCATTCA TCCAACAGAGTTATTTATTGGCTGGAGATGGAAAATCACACCACCTGACAGGCCTTCTGGGCCTCCAAAG CCCATCCTTGGGGTTCCCCCTCCCTGTGTGAAATGTATTATCACCAGCAGACACTGCCGGGCCTCCCTCC CGGGGGCACTGCCTGAAGGCGAGTGTGGGCATAGCATTAGCTGCTTCCTCCCCTCCTGGCACCCACTGTG GCCTGGCATCGCATCGTGGTGTGTCAATGCCACAAAATCGTGTGTCCGTGGAACCAGTCCTAGCCGCGTG TGACAGTCTTGCATTCTGTTTGTCTCGTGGGGGGAGGTGGACAGTCCTGCGGAAATGTGTCTTGTCTCCA TTTGGATAAAAGGAACCAACCAACAAACAATGCCATCACTGGAATTTCCCACCGCTTTGTGAGCCGTGTC GTATGACCTAGTAAACTTTGTACCAATTCAAAAAAAAAAAAAAAAAA >gi|188497754|ref|NP_000179.2| hexokinase 1 isoform HKI [Homo sapiens] MIAAQLLAYYFTELKDDQVKKIDKYLYAMRLSDETLIDIMTRFRKEMKNGLSRDFNPTATVKMLPTFVRS IPDGSEKGDFIALDLGGSSFRILRVQVNHEKNQNVHMESEVYDTPENIVHGSGSQLFDHVAECLGDFMEK RKIKDKKLPVGFTFSFPCQQSKIDEAILITWTKRFKASGVEGADVVKLLNKAIKKRGDYDANIVAVVNDT VGTMMTCGYDDQHCEVGLIIGTGTNACYMEELRHIDLVEGDEGRMCINTEWGAFGDDGSLEDIRTEFDRE IDRGSLNPGKQLFEKMVSGMYLGELVRLILVKMAKEGLLFEGRITPELLTRGKFNTSDVSAIEKNKEGLH NAKEILTRLGVEPSDDDCVSVQHVCTIVSFRSANLVAATLGAILNRLRDNKGTPRLRTTVGVDGSLYKTH PQYSRRFHKTLRRLVPDSDVRFLLSESGSGKGAAMVTAVAYRLAEQHRQIEETLAHFHLTKDMLLEVKKR MRAEMELGLRKQTHNNAVVKMLPSFVRRTPDGTENGDFLALDLGGTNFRVLLVKIRSGKKRTVEMHNKIY AIPIEIMQGTGEELFDHIVSCISDFLDYMGIKGPRMPLGFTFSFPCQQTSLDAGILITWTKGFKATDCVG HDVVTLLRDAIKRREEFDLDVVAVVNDTVGTMMTCAYEEPTCEVGLIVGTGSNACYMEEMKNVEMVEGDQ GQMCINMEWGAFGDNGCLDDIRTHYDRLVDEYSLNAGKQRYEKMISGMYLGEIVRNILIDFTKKGFLFRG QISETLKTRGIFETKFLSQIESDRLALLQVRAILQQLGLNSTCDDSILVKTVCGVVSRRAAQLCGAGMAA VVDKIRENRGLDRLNVTVGVDGTLYKLHPHFSRIMHQTVKELSPKCNVSFLLSEDGSGKGAALITAVGVR LRTEASS 917 aminoácidos 917 x 3 = 2751 3617-2751 = 866 3617 bp 3,6 kb

O método de Sanger, 1975 Polimerização do DNA a ser sequenciado (molde) na presença de: DNA polimerase primer tampão dNTPs (desóxinucleotídeo) ddNTPs (didesóxinucleotídeo) O que faria um nucleotídeo que, ao invés da extremidade 3’OH, tem uma extremidade 3’H? Como acontece a síntese de moléculas de DNA? http://www.youtube.com/watch?v=Mz-4LSfecM4&feature=related (dideóxi)

TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA ATGCTTC 5’ 3’ ||||||| TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA 3’ 5’

TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA ATGCTTC 5’ 3’ G A ||||||||| TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA 3’ 5’

TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA ATGCTTCTG 5’ 3’ G A |||||||||| TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA 3’

TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA ATGCTTCTGGCAGATCT 5’ 3’ ||||||||||||||||| TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA 3’ 5’

TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA ATGCTTCTGGCAGAT 5’ 3’ ||||||||||||||| TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA 3’ 5’

TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA ATGCTTCTGGCAGAT 5’ 3’ ||||||||||||||| TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA 3’ 5’

TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA ATGCTTCTGGCAGAT 5’ 3’ ||||||||||||||| TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA 3’ 5’

ATGCTTCTGGCAGATCTGAACAGTGTTACTGAT ATGCTTCTGGCAGATCTGAACAGTGT 5’ 3’ ATGCTTCTGGCAGATCTGAACAGTGT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGCTT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATAT ATGCTTCTGGCAGATCTGAACAGTGTTACT ATGCTTCTGGCAGATCTGAACAGT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGCT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATT ATGCTTCT ATGCTTCTGGCAGATCT População de moléculas Incorporação aleatória do didesóxi Quantidade precisa entre didesóxi e desóxi TACGAAGACCGTCTAGACTTGTCACAATGACTATAACGAA |||||||||||||||||||||||||||||||||||||||| 5’ 3’ ATGCTTCTGGCAGAT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGCTT ATGCTTCTGGCAGATCTGAACAGTGTT

ATGCTTCTGGCAGAT ATGCTTCTGGCAGATCTGAACAGTGTTACTGAT ATGCTTCTGGCAGATCTGAACAGTGT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGCTT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATAT ATGCTTCTGGCAGATCTGAACAGTGTTACT ATGCTTCTGGCAGATCTGAACAGT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGCT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATT ATGCTTCT ATGCTTCTGGCAGATCT ATGCTTCTGGCAGATCTGAACAGTGTT

molde polimerase dNTPs ddGTPs ddATPs ddTTPs ddCTPs G A T C

G A T C ATGCTTCT ATGCTTCTG ATGCTTCTGG ATGCTTCTGGC ATGCTTCTGGCA ATGCTTCTGGCAGAT ATGCTTCTGGCAGATCTGAACAGTGTTACTGAT ATGCTTCTGGCAGATCTGAACAGTGT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGCTT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATAT ATGCTTCTGGCAGATCTGAACAGTGTTACT ATGCTTCTGGCAGATCTGAACAGT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGCT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATT ATGCTTCT ATGCTTCTGGCAGATCT ATGCTTCTGGCAGATCTGAACAGTGTT ATGCTTCTG ATGCTTCTGG ATGCTTCTGGCAG ATGCTTCTGGCAGATCTG ATGCTTCTGGCAGATCTGAACAG ATGCTTCTGGCAGATCTGAACAGTG ATGCTTCTGGCAGATCTGAACAGTGTTACTG ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTG ATGCTTCTGGC ATGCTTCTGGCAGATC ATGCTTCTGGCAGATCTGAAC ATGCTTCTGGCAGATCTGAACAGTGTTAC ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGC ATGCTTCTGGCA ATGCTTCTGGCAGA ATGCTTCTGGCAGATCTGA ATGCTTCTGGCAGATCTGAA ATGCTTCTGGCAGATCTGAACA ATGCTTCTGGCAGATCTGAACAGTGTTA ATGCTTCTGGCAGATCTGAACAGTGTTACTGA ATGCTTCTGGCAGATCTGAACAGTGTTACTGATA G A T C

ATGCTTCTGGCAGAT ATGCTTCTGGCAGATCTGAACAGTGTTACTGAT ATGCTTCTGGCAGATCTGAACAGTGT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGCTT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATAT ATGCTTCTGGCAGATCTGAACAGTGTTACT ATGCTTCTGGCAGATCTGAACAGT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGCT ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATT ATGCTTCT ATGCTTCTGGCAGATCT ATGCTTCTGGCAGATCTGAACAGTGTT ATGCTTCTG ATGCTTCTGG ATGCTTCTGGCAG ATGCTTCTGGCAGATCTG ATGCTTCTGGCAGATCTGAACAG ATGCTTCTGGCAGATCTGAACAGTG ATGCTTCTGGCAGATCTGAACAGTGTTACTG ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTG ATGCTTCTGGC ATGCTTCTGGCAGATC ATGCTTCTGGCAGATCTGAAC ATGCTTCTGGCAGATCTGAACAGTGTTAC ATGCTTCTGGCAGATCTGAACAGTGTTACTGATATTGC ATGCTTCTGGCA ATGCTTCTGGCAGA ATGCTTCTGGCAGATCTGA ATGCTTCTGGCAGATCTGAA ATGCTTCTGGCAGATCTGAACA ATGCTTCTGGCAGATCTGAACAGTGTTA ATGCTTCTGGCAGATCTGAACAGTGTTACTGA ATGCTTCTGGCAGATCTGAACAGTGTTACTGATA

As máquinas necessárias para o sequenciamento Primeira etapa: junta-se os reagentes em poços de placas e coloca-se na máquina de PCR para a reação de amplificação interrompida Diferenças com relação ao PCR Utilização de um só primer Utilização dos ddNTPs Uma vez prontas, as sequências de diferentes tamanhos contendo os didesóxi amplificados devem ser enviadas ao sequenciador de DNA mais próximo

O que faz um sequenciador de DNA? Segunda etapa: realiza a eletroforese capilar O sequenciador executa a eletroforese em géis capilares ultra-finos Um sensor é responsável por emitir um laser e verificar qual o comprimento de onda emitido pelo didesóxi

A produção de bibliotecas de DNA e cDNA Projetos Genoma e Transcriptoma A produção de bibliotecas de DNA e cDNA Prof. Dr. Francisco Prosdocimi

O que é um genoma? Por que haplóide? Conjunto haplóide de informações presentes no DNA de determinado organismo Genomas bacterianos X Genomas eucarióticos Cromossomos são formados por uma única molécula de DNA Genoma humano: 22 pares de cromossomos autossomos + X + Y O problema da variação – SNPs Estudos genômicos e o método científico A era da pesquisa científica sem hipótese Por que haplóide?

Biblioteca de DNA e cDNA Fragmentação Inserção em vetores Transformação mRNA Síntese de cDNA Inserção em vetores Transformação

Biblioteca transcriptômica Ou biblioteca de cDNA, DNA complementar Purificação dos mRNAs Oligos dT Retrotranscrição Clonagem

Análises genômicas e transcriptômicas Genoma: muito utilizado para produzir sequências completas do DNA de bactérias e vírus, que apresentam genoma compacto Assim é possível saber se o organismo tem as vias bioquímicas completas e como ele deve se alimentar Transcriptoma: classicamente utilizado em estudos de células cancerosas, onde a diferença na expressão dos genes deve mostrar porque a célula é tumoral Comparação entre a expressão gênica em uma célula normal e o tumor Comparações quaisquer entre dois estados celulares http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome

Expressão gênica

Bioinformática, formatos de arquivo

O formato FASTA Fast Alignment: programa de alinhamento da década de 80 Arquivo texto FASTA e multi-FASTA >gi|188497753|ref|NM_000188.2| Homo sapiens hexokinase 1 (HK1), nuclear gene encoding mitochondrial protein, transcript variant 1, mRNA GAGGAGGAGCCGCCGAGCAGCCGCCGGAGGACCACGGCTCGCCAGGGCTGCGGAGGACCGACCGTCCCCA CGCCTGCCGCCCCGCGACCCCGACCGCCAGCATGATCGCCGCGCAGCTCCTGGCCTATTACTTCACGGAG CTGAAGGATGACCAGGTCAAAAAGATTGACAAGTATCTCTATGCCATGCGGCTCTCCGATGAAACTCTCA TAGATATCATGACTCGCTTCAGGAAGGAGATGAAGAATGGCCTCTCCCGGGATTTTAATCCAACAGCCAC AGTCAAGATGTTGCCAACATTCGTAAGGTCCATTCCTGATGGCTCTGAAAAGGGAGATTTCATTGCCCTG GATCTTGGTGGGTCTTCCTTTCGAATTCTGCGGGTGCAAGTGAATCATGAGAAAAACCAGAATGTTCACA TGGAGTCCGAGGTTTATGACACCCCAGAGAACATCGTGCACGGCAGTGGAAGCCAGCTTTTTGATCATGT TGCTGAGTGCCTGGGAGATTTCATGGAGAAAAGGAAGATCAAGGACAAGAAGTTACCTGTGGGATTCACG TTTTCTTTTCCTTGCCAACAATCCAAAATAGATGAGGCCATCCTGATCACCTGGACAAAGCGATTTAAAG CGAGCGGAGTGGAAGGAGCAGATGTGGTCAAACTGCTTAACAAAGCCATCAAAAAGCGAGGGGACTATGA TGCCAACATCGTAGCTGTGGTGAATGACACAGTGGGCACCATGATGACCTGTGGCTATGACGACCAGCAC TGTGAAGTCGGCCTGATCATCGGCACTGGCACCAATGCTTGCTACATGGAGGAACTGAGGCACATTGATC TGGTGGAAGGAGACGAGGGGAGGATGTGTATCAATACAGAATGGGGAGCCTTTGGAGACGATGGATCATT >gi|188497753|ref|NM_000188.2| Homo sapiens hexokinase 1 (HK1), nuclear gene encoding mitochondrial protein, transcript variant 1, mRNA CAAGGACATGCTGCTGGAGGTGAAGAAGAGGATGCGGGCCGAGATGGAGCTGGGGCTGAGGAAGCAGACG CACAACAATGCCGTGGTTAAGATGCTGCCCTCCTTCGTCCGGAGAACTCCCGACGGGACCGAGAATGGTG ACTTCTTGGCCCTGGATCTTGGAGGAACCAATTTCCGTGTGCTGCTGGTGAAAATCCGTAGTGGGAAAAA GAGAACGGTGGAAATGCACAACAAGATCTACGCCATTCCTATTGAAATCATGCAGGGCACTGGGGAAGAG CTGTTTGATCACATTGTCTCCTGCATCTCTGACTTCTTGGACTACATGGGGATCAAAGGCCCCAGGATGC CTCTGGGCTTCACGTTCTCATTTCCCTGCCAGCAGACGAGTCTGGACGCGGGAATCTTGATCACGTGGAC AAAGGGTTTTAAGGCAACAGACTGCGTGGGCCACGATGTAGTCACCTTACTAAGGGATGCGATAAAAAGG AGAGAGGAATTTGACCTGGACGTGGTGGCTGTGGTCAACGACACAGTGGGCACCATGATGACCTGTGCTT >gi|188497754|ref|NP_000179.2| hexokinase 1 isoform HKI [Homo sapiens] MIAAQLLAYYFTELKDDQVKKIDKYLYAMRLSDETLIDIMTRFRKEMKNGLSRDFNPTATVKMLPTFVRS IPDGSEKGDFIALDLGGSSFRILRVQVNHEKNQNVHMESEVYDTPENIVHGSGSQLFDHVAECLGDFMEK RKIKDKKLPVGFTFSFPCQQSKIDEAILITWTKRFKASGVEGADVVKLLNKAIKKRGDYDANIVAVVNDT VGTMMTCGYDDQHCEVGLIIGTGTNACYMEELRHIDLVEGDEGRMCINTEWGAFGDDGSLEDIRTEFDRE IDRGSLNPGKQLFEKMVSGMYLGELVRLILVKMAKEGLLFEGRITPELLTRGKFNTSDVSAIEKNKEGLH NAKEILTRLGVEPSDDDCVSVQHVCTIVSFRSANLVAATLGAILNRLRDNKGTPRLRTTVGVDGSLYKTH PQYSRRFHKTLRRLVPDSDVRFLLSESGSGKGAAMVTAVAYRLAEQHRQIEETLAHFHLTKDMLLEVKKR MRAEMELGLRKQTHNNAVVKMLPSFVRRTPDGTENGDFLALDLGGTNFRVLLVKIRSGKKRTVEMHNKIY AIPIEIMQGTGEELFDHIVSCISDFLDYMGIKGPRMPLGFTFSFPCQQTSLDAGILITWTKGFKATDCVG HDVVTLLRDAIKRREEFDLDVVAVVNDTVGTMMTCAYEEPTCEVGLIVGTGSNACYMEEMKNVEMVEGDQ GQMCINMEWGAFGDNGCLDDIRTHYDRLVDEYSLNAGKQRYEKMISGMYLGEIVRNILIDFTKKGFLFRG QISETLKTRGIFETKFLSQIESDRLALLQVRAILQQLGLNSTCDDSILVKTVCGVVSRRAAQLCGAGMAA VVDKIRENRGLDRLNVTVGVDGTLYKLHPHFSRIMHQTVKELSPKCNVSFLLSEDGSGKGAALITAVGVR LRTEASS

O formato GenBank http://www.ncbi.nlm.nih.gov Comandos LINUX