Lista 3!!!.

Slides:



Advertisements
Apresentações semelhantes
Lista 3 - parte 2.
Advertisements

VIII Espectroscopia luz luz Método envolve: excitação detecção Fontes
Matéria Escura. Introdução Cerca de 90% do Universo é escuro, ou seja, não emite radiação eletromagnética, só sabemos da existência dessa matéria escura.
Lista 3!!!.
O Pêndulo de Torção Suspensão por Barra de Torção.
O Experimento da Roda de Inércia
PROGRESSÃO ARITMÉTICA P.A.
Modelo planetário: errado Elétrons são descritos por meio de funções de onda Mecânica Quântica : probabilidades.
Ondas distúrbio / variação de uma grandeza física se propagam
Ondas distúrbio (de um meio) se propagam
Transporte em Nanoestruturas. I) Transporte balístico Um material unidimensional (confinado em duas dimensões) transporta carga quando uma voltagem é
Equação de London/London (1935)
PGF5001 – Mecânica Quântica 1 Prof. Emerson Passos.
Prof. Celso Gramática.
Introdução a Resolução Numérica de Equações Diferenciais Ordinárias
Método de diferenças finitas para problemas lineares
INTRODUÇÃO À GEOMETRIA DO ESPAÇO-TEMPO
MÉTRICA ds2=dx2+dy2 Distância entre dois pontos numa superfície
CAPÍTULO 9 cosmologia relativística.
1 III - CONDIÇÕES FÍSICAS NO INTERIOR ESTELAR »» Teoria da estrutura estelar === extremamente complexa: (exige Conhecimentos sobre:) Reações nucleares;
►► outras formas dessa equação:
 MORAL DA HISTÓRIA?? Nesse caso, os e - de maior  contribuição importante   pressão do gás; é a chamada PRESSÃO DE DEGENERESCÊNCIA. ►►
VI: EQUILÍBRIO RADIATIVO
1 III - CONDIÇÕES FÍSICAS NO INTERIOR ESTELAR »» Teoria da estrutura estelar === extremamente complexa: Reações nucleares; Transformações químicas ? estrutura.
GEOMETRIA DE ESPAÇOS CURVOS
1 3.5: Equilíbrio Termodinâmico Equilíbrio Termodinâmico parâmetros termodinâmicos (P,T) constantes A existência de equilíbrio termodinâmico (ET) ou E.T.
1 3.5: Equilíbrio Termodinâmico 1 A existência de equilíbrio termodinâmico (ET) ou equilíbrio termodinâmico local (ETL) no interior estelar grandes simplificações:
ALGUNS CONCEITOS DE TERMODINÂMICA
Comentários sobre alguns politropos de interesse:
FA-023 – Adequação Trator-implemento
Prof. Dr. Helder Anibal Hermini
Desempenho de Tratores aula 3
MODELAGEM DINÂMICA DE SISTEMAS MECÂNICOS
EQUILÍBRIO DINÂMICO DE UMA MASSA EM TRANSLAÇÃO - 2º Lei de Newton
Compressão de Voz Francisco Socal Tiago Peres Leonardo Silveira.
PROFESSOR: MARCELO ALANO. REVISÃO PARA 3º ANO
Técnicas de Processamento Imagens
PotenCial ElÉTRICO Universidade Federal do Paraná
Física Quântica Exercícios
Laboratório de Fotojornalismo
Função Gráficos. Domínio e imagem no gráfico.
Materiais Propriedades mecânicas Reologia.
CARACTERIZAÇÃO DE PARTÍCULAS
TA 733 A – Operações Unitárias II
Sedimentação Universidade Estadual de Campinas
TA 733 A – Operações Unitárias II CONDUÇÃO de Calor
TA 733 A – Operações Unitárias II Transferência de Calor
Probabilidade Modelo matemático para incerteza Desenvolvimento relativamente recente –Cardano (século XVI) –Pascal (século XVII) Peter Bernstein, Against.
Mecânica dos Materiais TA-431 FEA/Unicamp
Óptica Refração da Luz.
Já definimos o coeficiente angular de uma curva y = f(x) no ponto onde x = x 0. Derivadas Chamamos esse limite, quando ele existia, de derivada de f em.
Teorema do Confronto Se não pudermos obter o limite diretamente, talvez possamos obtê-lo indiretamente com o teorema do confronto. O teorema se refere.
TE 043 CIRCUITOS DE RÁDIO-FREQÜÊNCIA
Interpolação Introdução Conceito de Interpolação
8.EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Parte 5
Resolução de Sistemas Não-Lineares- Parte 1
Sistemas Lineares Parte 2
Resolução de Sistemas Lineares- Parte 1
Desempenho A rápida taxa de melhoria na tecnologia de computadores veio em decorrência de dois fatores: avanços na tecnologia utilizada na construção.
7. INTEGRAÇÃO NUMÉRICA Parte 1
Listas Lineares.
VELOCIDADE DE REAÇÃO 1.A CONCENTRAÇÃO E A VELOCIDADE DE REAÇÃO 2.A VELOCIDADE INSTANTÂNEA DE REAÇÃO 3.AS LEIS DE VELOCIDADE E A ORDEM DE REAÇÃO.
Função Exponencial.
Otimização Aplicada ao Dimensionamento e Operação de Reservatórios
Introdução à Mecânica Bibliografia:
Visão Computacional Shape from Shading e Fotométrico Eséreo
Formação de Imagem - Sampling
1 Seja o resultado de um experimento aleatório. Suponha que uma forma de onda é associada a cada resultado.A coleção de tais formas de ondas formam um.
8. Uma Função de duas Variáveis Aleatórias
Ondas em uma corda Tomemos uma corda esticada:
Transcrição da apresentação:

Lista 3!!!

3. Um oscilador criticamente amortecido,partindo da posição de equilíbrio, recebe um impulso que lhe comunica uma velocidade inicial v0. Verifica-se que ele passa por seu deslocamento máximo, igual a 3,68 m, após 1 segundo. Qual é o valor de v0? (b) Se o oscilador tivesse um deslocamento inicial x0 = 2 m com a mesma velocidade inicial v0, qual seria o valor de x no instante t? R: (a) v0 = 10 m/s (b) x(t) = e−t (2+12t) Vamos construir as equações básicas e impor as condições iniciais propostas.

O caso crítico O caso super crítico O caso amortecido

Em t = 0 : x(0) = 0  a = 0

Item a: A velocidade inicial será: Item b: Para uma condição inicial de partida em Xo = 2m temos: A condição inicial de partida resulta que a = 2m A velocidade inicial é dada sendo 10m/s, então obtemos o valor de b:

4. (Poli 2006) O Gráfico de x(t), mostrado na figura abaixo, representa a equação horária de um oscilador criticamente amortecido, para um sistema composto de um corpo de massa m = 1, 0 Kg preso a uma mola de constante elástica k e imerso em um líquido viscoso, de coeficiente de resistência viscosa. (a) Em que instante de tempo a velocidade do corpo será nula, no intervalo de tempo mostrado no gráfico? A velocidade é zero quando a tangente da curva for zero. Isso corresponde em t = 3 s V = 0 t = 3s

(b) A equação horária x(t) pode ser escrita como: x(t) = e−/2t(a + bt) Podemos derivar x(t) duas vezes e montar a equação diferencial. E em seguida mostramos que a identidade vale: Determine os valores de a e b. (c) Determine a constante de decaimento e a constante elástica k da mola. (d) Determine o valor da velocidade inicial do oscilador. R: (a) t=3s; (b) a = 0, 5 m e b = 0, 5 m/s; (c) = 1 s−1; (d) v0 = −0.75 m/s.

Oscilações livres com amortecimento viscoso proporcional a velocidade. é o atrito viscoso. Freqüência angular com dissipação viscosa.

Item b: Solução da Equação do Movimento com Atrito Viscoso Vamos testar uma solução com a função: As suas respectivas derivadas são: Que, substituídas na equação resulta: a solução para x será:

A solução fica na forma: Observe que temos duas soluções possíveis! Mas! então o termo da raiz é complexo! e fazendo: Escrevendo a raiz na forma: Uma solução parcial será:

Usando-se a relação de Euler: A solução final tem a forma: O termo de atrito viscoso é: A freqüência angular desta oscilação será: A oscilação esta em estado crítico quando: Também chamado caso degenerado:

Uma equação dif. de seg. grau tem 2 soluções que no caso degenerado já sabemos uma. Como será a forma da segunda solução? A outra solução é procurar a forma : e repetindo o processo anterior de derivação sucessiva. Concluiremos que a segunda solução : E assim a solução geral do caso degenerado será:

Item b: Para t = 0 temos x = 0.5 x = 0 Para t = 1s temos x = 0 t = 0

Item c: Se v(3) = 0 EXTRAIR O VALOR DE GAMA e o k da mola : A VELOCIDADE SERÁ:

A equação de d´Alembert A solução da equação de d´Alembert tem a forma y(x,t) = f(x±vt) onde o sinal (–) significa que a propagação será progressiva () e (+) regressiva () e v é a velocidade de propagação da onda. A busca da sua solução implica em se impor condições de contorno. A solução y(x,t) = f(x±vt) pode ser simples ou muito complexa!

20. (Poli 2006) Uma corda uniforme, de comprimento 20 m e massa 2 Kg, está esticada sob uma tensão de 10 N. Faz-se oscilar transversalmente uma extremidade da corda, com amplitude 3 cm e frequencia de 5 oscilações por segundo. O deslocamento inicial da extremidade é de 1,5 cm para cima. (a) Ache a velocidade de propagação v e o comprimento de onda da onda transversal progressiva que é produzida na corda. (b) Escreva, como função do tempo, o deslocamento transversal y de um ponto da corda situado a uma distância x da extremidade que se faz oscilar, após ser atingido pela onda e antes que ela chegue à outra extremidade. (c) Calcule a intensidade I da onda progressiva gerada.

Se a massa é 2Kg e o comprimento 20m a densidade linear da corda é : A velocidade é dada por: O comprimento de onda é dado por: Onde :

Uma solução geral da equação de d´Alembert é: A amplitude A é 3cm 0,03m e a fase se obtém impondo y(0,0) = 0,015m(f = p/3) 2m 3cm

A potência média é :

12. Considere duas partículas A e B cada uma com massa m conectadas por uma mola de constante elástica k e comprimento natural. Cada partícula está ligada a dois suportes C e D por duas molas com as mesmas características da primeira mola.Os dois suportes são separados por uma distância 3b, como mostrado na figura (a). Em um dado instante de tempo t o deslocamento das partículas A e B é x e y a partir da posição de equilíbrio resultando nas forças mostradas na figura. Calcule as frequências de oscilação do sistema.

Modo Anti - Simétrico Modo Simétrico

11. Duas partículas de mesma massa, igual a 250 g, estão suspensas do teto por barras idênticas, de 0,5 m de comprimento e massa desprezível, e estão ligadas uma à outra por uma mola de constante elástica 25 N/m. No instante t = 0, a partícula 2 (figura abaixo) recebe um impulso que lhe transmite uma velocidade de 10 cm/s. Determine os deslocamentos x1(t) e x2(t) das posições de equilíbrio das duas partículas (em cm) para t > 0. R: x1(t) = 1,13 sen(4,43t) − 0,34 sen(14,8t) x2(t) = 1,13 sen(4,43t) + 0,34 sen(14,8t)

Dr. Sebastião Simionatto FEP 2196 - 2009