Axiomatização Isaac Toyoshi Takiguchi Jr. Lucas Campos Silva

Slides:



Advertisements
Apresentações semelhantes
Lógica de Predicados e Representação de Conhecimento
Advertisements

DESENHO INDUSTRIAL ASSISTIDO POR COMPUTADOR
Capítulo 7 Tableaux semânticos e resolução na Lógica Proposicional
MÁQUINAS UNIVERSAIS Fabrício Dias
Unidade 7 SEQUÊNCIAS E REGULARIDADES
Linguagens Formais e Autômatos
Técnicas de orçamento de capital
VETORES.
1 Controlo e Aprendizagem Aula Teórico-Prática nº 1 Metodologia experimental Planificação das aulas Temas dos trabalhos de grupo Avaliação.
Pré-Discussão do Artigo “Is Computer Science Science?”
Vetores Representação e características Operações I Decomposição
Metodologia Científica e Tecnológica
SISTEMAS DE EQUAÇÕES.
Modelos no Domínio do Tempo de Sistemas LTI Contínuos
Resolução.
1 Complexidade de Algoritmos Complexidade de pior caso Complexidade de melhor caso de uso bem menos freqüente em algumas situações específicas Complexidade.
BCC 101 –Matemática Discreta
MB751 – Modelos de previsão
1 Sabendo-se que os pratos das balanças estão em equilíbrio, você seria capaz de dizer: Quantos quadrados corresponde um círculo ? Dica Mais dicas Elaboração:
Polinômios Prof. Marlon.
SENIB SENIB PRINCÍPIOS DE VIDA PRINCÍPIOS DE VIDA AUTO-IMAGEM.
Auditoria de Segurança da Informação
Introdução Professor: Luiz Carlos Gabi
Trabalho Dedução Natural
Resolução Proposicional
AXIOMATIZAÇÃO Equipe: André Augusto Kaviatkovski, Daniel Elias Ferreira, Vinicius Zaramella.
DEDUÇÃO NO CÁLCULO PROPOSICIONAL
Indução Métodos de prova já vistos Excepções
Linguagem de 1ª ordem da teoria de conjuntos
A Lógica das Sentenças Abertas Profa. Ana Florencia Aula 9
Filosofia Prof. Everton da Silva Correa.
TEORIA DOS NÚMEROS Embora existam diversos tipos de números na Matemática (reais, complexos, etc.), o nome "Teoria dos Números" é tradicionalmente reservado.
AXIOMA DA ESCOLHA: CONSEQÜÊNCIAS E DISCUSSÕES
Conceitos Básicos.
Campus de Caraguatatuba
Como aplicar leis da lógica
Momentos de Inércia Cap. 10
Momentos de Inércia Cap. 10
Desenvolvimento do Raciocínio em Geometria
Conhecimento Científico Noutros conhecimentos...
BCC 101 –Matemática Discreta
Salas de Matemática.
AXIOMÁTICA Rosa Canelas.
AXIOMÁTICA.
Dinâmica do Papel Profª Elaine C. M. Kozuki Ciências 9º ano do F II.
Taxonomia Profa. Lillian Alvares,
SISTEMAS DIGITAIS ALGEBRA DE BOOLE E SIMPLIFICAÇÃO DE CIRC. LÓGICOS
O quinto Postulado de Euclides João Lucas Marques Barbosa
GEOMETRIA AXIOMÁTICA, SEGMENTOS DE RETA
Modelos Matemáticos Usados como tipos em especificações baseadas em modelos Apresentados como teorias ou sistemas formais Uma teoria é definida em termos.
INTRODUÇÃO À ANÁLISE COMBINATÓRIA
ÁLGEBRA – AULA 2 Equações.
1 2 Observa ilustração. Cria um texto. Observa ilustração.
Conceitos básicos em grafos
Trigonometria 19/11/2009.
Campus de Caraguatatuba Aula 2: Somatório e Produtório
UNIVERSIDADE SEVERINO SOMBRA
Eletromagnetismo I Prof. Paulo Rosa – INFI/UFMS
ALGORITMOS Intensivo Janeiro e Fevereiro de 2011
1 - Introdução à Modelagem Matemática
Campus de Caraguatatuba
Professor Antonio Carlos Coelho
BCC 101 – Matemática Discreta I
Cosmologia A Lógica do Universo.
Campus de Caraguatatuba Aula 9: Noções Básicas sobre Erros (3)
Fontes de Erros Aula 1 Introdução; Erros em processos numéricos;
Lógica para Computação Prof. Celso Antônio Alves Kaestner, Dr. Eng. celsokaestner (at) utfpr (dot) edu (dot) br.
INTRODUÇÃO À PROGRAMAÇÃO EM LÓGICA Profa. Joseluce de Farias Cunha
Cultura Alexandrina ASSUNTO: EUCLIDES
História da Filosofia Contemporânea - II "Aula introdutória" Observações: Sentido e Significado Princípio de verificação Princípio de uso.
Transcrição da apresentação:

Axiomatização Isaac Toyoshi Takiguchi Jr. Lucas Campos Silva Marcelo Butzke Leopoldino

Exemplo de Axioma Gravitação universal

Exemplo – Axiomas de Euclides Axioma 1: Duas coisas iguais a uma terceira, são iguais entre si. Axioma 2: Se parcelas iguais forem adicionadas a quantias iguais, os resultados continuarão sendo iguais. Axioma 3: Se quantias iguais forem subtraídas das mesmas quantias, os restos serão iguais.

Exemplo - Axiomas de Euclides Axioma 4: O todo é maior que a parte.

Axioma - Etimologia αξιωμα (axioma); Algo considerado válido, adequado ou auto- evidente; Por sua vez derivado da palavra grega “axios”, válido;

Axioma Na matemática, um axioma é uma hipótese inicial de qual outros enunciados são logicamente derivados, permitindo a construção de um sistema formal; Não podem ser derivados por princípios de dedução e nem são demonstráveis por derivações formais, simplesmente porque eles são hipóteses iniciais. Isto é, não há mais nada a partir do que eles seguem logicamente (em caso contrário eles seriam chamados teoremas); Em muitos contextos, "axioma", “postulados" e "hipótese" são usados como sinônimos;

Axioma – Histórico Euclides de Alexandria – Elementos; Exemplo de sistematização mais conhecido da antiga matemática grega; Usando conceitos fundamentais de ponto, reta e plano criou uma lista de cinco postulados. Imagem: WIKIPEDIA. Euclides. Disponível em: http://pt.wikipedia.org/wiki/Euclides Acessado em 24 de março de 2009.

Axioma – Histórico Postulado 1: Uma reta pode ser traçada de um ponto para outro qualquer;

Axioma – Histórico Postulado 2: Qualquer segmento finito de reta pode ser prolongado indefinidamente para construir uma reta;

Axioma - Histórico Postulado 3: Dados um ponto qualquer e uma distância qualquer, pode-se traçar um círculo de centro naquele ponto e raio igual à dada distância;

Axioma - Histórico Postulado 4: Todos os ângulos retos são iguais entre si; Postulado 5: Se uma reta cortar duas outras retas de modo que a soma dos dois ângulos interiores, de um mesmo lado, seja menor que dois ângulos retos, então as duas outras retas se cruzam, quando suficientemente prolongadas, do lado da primeira reta em que se acham os dois ângulos;

Axioma – Histórico – 5º Postulado O mais famoso; Inúmeros matemáticos suspeitaram que o 5º postulado poderia ser deduzido a partir dos demais; Carl Friedrich Gauss e posteriormente outros matemáticos perceberam sua independência aos demais;

Axioma – Histórico David Hilbert, em 1900, apresentou uma histórica palestra na qual listou 23 problemas principais legadas pelos matemáticos do século XIX; Sexto problema, no qual diz que tratar do mesmo modo, por meio de axiomas, as ciências físicas nas quais a matemática tem importante papel: são prioritárias a teoria de probabilidades e a mecânica;

Axioma – Histórico Deixou de forma bem clara que o rigor matemático poderia existir em qualquer ramo da ciência, com base matemática; Matemática trata sempre da estrutura dedutiva de sistemas, partindo de alguns conceitos primitivos (vagos e intuitivos), relacionando-se e permitindo a dedução de consequências e teoremas;

Axioma – Histórico Tais considerações motivam o estudo rigoroso, do ponto de vista axiomático, de teorias físicas; Hoje já temos sistemas axiomáticos para teorias da física, biologia, economia, e até mesmo para geociências.

Linguagem formal e informal Formal – linguagem artificial na qual os conceitos são devidamente tornados precisos; Informal – língua natural, por exemplo o Português;

Teoria Formal Conjunto de símbolos; Conjunto de expressões; Conjunto de fórmulas bem formadas; Procedimentos que permitem distinguir fórmulas bem formadas; Um conjunto de axiomas da teoria, que é composto de fórmulas bem formadas; Um conjunto de relações entre as fórmulas bem formadas; Um procedimento para decidir se as relações são consideradas válidas, dadas um conjunto de fórmulas bem formadas;

Teoria Formal Inferência é o processo pelo qual se chega a uma dedução, firmada na base de uma ou outras mais fórmulas bem formadas aceitas como ponto de partida do processo; As regras de inferência são fundamentais no processo lógico-dedutivo de teorias formais, permitindo a dedução de teoremas;

Teoria axiomática Procedimento efetivo para decidir quais fórmulas bem formadas são axiomas; Demonstração é uma sequência de fórmulas bem formadas que foram “derivadas” através de uma regra de inferência; Um teorema é a última fórmula bem formada da sequência da demonstração; Teoria decidível – quando existe procedimento para dizer se uma fórmula bem formada é um teorema da Teoria;

Teoria axiomática Uma fórmula bem formada é dita uma consequência quando está é derivada de um axioma ou fórmulas bem formadas pertencentes aos conjuntos de premissas e hipóteses da prova (Γ) por alguma regra de inferência;

Para que axiomas? O processo de axiomatização sintetiza parte significativa do método científico, onde as teorias sempre partem de um mínimo pressupostos permitindo varias inferências lógicas. Exemplo: A teoria da gravitação permite descrever desde a simples queda de uma maçã até a órbita lunar;

Para que axiomas? Permite a “economia de pensamentos”. Exemplo: A teoria de distribuições requer conhecimento de análise funcional (matéria de nível de pós-graduação), porém José Sebastião e Silva elaborou uma axiomatização para a teoria que a tornou “simples”, para pessoas com conhecimento em cálculo diferencial e integral;

Para que axiomas? Tem poder de qualificar discurso, ou seja, permite que questões de caráter filosófico em ciência sejam respondidas objetivamente; Exemplos: Questões sobre eliminabilidade de conceitos primitivos, questões sobre consistência, etc.

Para que axiomas? É exelente instrumento de pesquisa matemática; Exemplo: em topologia um importante teorema, o de Tychonoff, um curioso resultado sobre espaços topológicos compactos, é equivalente ao Axioma da Escolha na teoria de conjuntos de Zermelo- Fraenkel. Ou seja, sem o Axioma da Escolha, não há teorema de Tychonoff;

Limitações Pode ser desinteressante do ponto de vista didático; Método genético, se opõe ao axiomático. Exemplo: Para aprender cálculo diferencial e integral, pressupõe conhecida a teoria de conjuntos, a noção de número real, e em seguida, limites;

Limitações Em compensação, o método axiomático é explicitamente usado em topologia, álgebra, álgebra linear, análise matemática, etc;

Precisamos de axiomas? Depende do interesse de quem faz ciência; Muitos dos trabalhos científicos de grande relevância, foram feitos sem qualquer uso explícito do método axiomático; Figura indispensável em questões sobre os fundamentos lógico-matemáticos de qualquer disciplina;

Referências SANT’ANNA, Adonai S. (2003) O que é um Axioma. WIKIPEDIA. Axioma. Disponível em: http://pt.wikipedia.org/wiki/Axioma Acessado em 24 de março de 2009.