A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Capítulo 5 Pesquisa Operacional na Tomada de Decisões 2ª Edição © Gerson Lachtermacher,2005 Problemas de Rede.

Apresentações semelhantes


Apresentação em tema: "Capítulo 5 Pesquisa Operacional na Tomada de Decisões 2ª Edição © Gerson Lachtermacher,2005 Problemas de Rede."— Transcrição da apresentação:

1 Capítulo 5 Pesquisa Operacional na Tomada de Decisões 2ª Edição © Gerson Lachtermacher,2005 Problemas de Rede

2 Capítulo 5 Conteúdos do Capítulo Problema de Transporte Caso LCL Bicicletas Sem/Com Dummy Como Modelos de Rede Caso LCL Fórmula 1 Ltda. Caso LCL Construções S.A. Problemas de Rede de Distribuição; Caso Frod Brasil Caso LCL Eletrodomésticos Problemas do Menor Caminho; Problemas de Fluxo Máximo;

3 Capítulo 5 Problema de Transporte Caso LCL Bicicletas Centro Consumidor FábricaRecifeSalvadorManausCapacidade Rio São Paulo B.Horizonte Demanda A LCL Bicicletas possui 3 fábricas localizadas no Rio, São Paulo e Belo Horizonte. A produção deve ser entregue em Recife, Salvador e Manaus. Considerando os custos de transporte unitários, as capacidades de produção das fábricas e as demandas dos centros consumidores que estão especificados na tabela a seguir, determine quanto deve ser produzido e entregue por cada fábrica em cada centro consumidor de forma a minimizar os custos de transporte.

4 Capítulo 5 Problema de Transporte: Modelo Tradicional Existem 9 variáveis para expressar a quantidade transportada em cada uma das possíveis vias. x ij = Quantidade transportada da fábrica i para o centro consumidor j. Horizonte Belo 3 Paulo São 2 Rio 1 i Manaus 3 Salvador 2 Recife 1 j

5 Capítulo 5 Problema de Transporte: Variáveis de Decisão RIO SP BHZ REC SSA MAN x 11 x 12 x 13 x 21 x 22 x 23 x 31 x 32 x 33 Centro Consumidor FábricaRECSSAMAN Rio x 11 x 12 x 13 SP x 21 x 22 x 23 BH x 31 x 32 x 33

6 Capítulo 5 Problema de Transporte: Modelo Tradicional

7 Capítulo 5 Problemas de Transporte: Propriedades Soluções Inteiras: Para problemas de transporte onde os valores das ofertas, o i e demandas d j, sejam números inteiros, todos os valores das variáveis das soluções básicas viáveis, incluindo a solução ótima, também serão inteiros.

8 Capítulo 5 A condição necessária e suficiente para um problema de transporte com n fábricas e m centros consumidores tenha solução é dada por: T otal da Capacidade = Total da demanda m j j n i i df 11 Problemas de Transporte: Propriedades

9 Capítulo 5 Problema de Transporte Oferta Diferente da Demanda A regra das variáveis fantasma (Dummy): No caso de Oferta Demanda devemos introduzir um destino fantasma; No caso de Demanda Oferta devemos introduzir uma oferta fantasma; Todos os custos relacionados às variáveis fantasma serão nulos; A oferta ou a demanda fantasma será dada pela diferença entre o total ofertado e total demandado.

10 Capítulo 5 Problema de Transporte Caso LCL Bicicletas Modificando a oferta de São Paulo de 1500 para 3000 Demanda total menor que a Oferta total! Centro ConsumidorCapacidade FábricaRecife Salvador Manaus(oferta) Rio São Paulo B.Horizonte Demanda

11 Capítulo 5 Problema de Transporte Caso LCL Bicicletas Centro Consumidor FábricaRecife Salvador ManausDummyCapacidade Rio São Paulo B.Horizonte Demanda Cria-se um consumidor Dummy:

12 Capítulo 5 Caso LCL Bicicletas Resolvendo no Excel

13 Capítulo 5 Caso LCL Bicicletas Parâmetros e Opções do Solver

14 Capítulo 5 Caso LCL Bicicletas Resolvendo no Excel

15 Capítulo 5 Problemas de Transporte Solução Alternativa As Variáveis Dummy não são obrigatórias, apenas facilitam a interpretação do resultado da otimização. Capacidade > Demanda: Criação de consumidor dummy Interpretação: capacidade ociosa Alternativa: restrições de oferta com sinal Demanda > Capacidade: Criação de fábrica dummy Interpretação: demanda não atendida; Alternativa: restrições de demanda com sinal

16 Capítulo 5 Caso LCL Bicicletas Modelo sem Fantasma no Excel Todas as fórmulas são idênticas...

17 Capítulo 5 Caso LCL Bicicletas Modelo sem Fantasma no Excel As restrições de oferta estão com sinal

18 Capítulo 5 Caso LCL Bicicletas Modelo sem Fantasma no Excel

19 Capítulo 5 Modelos em Rede Modelos de rede podem ser utilizados em diversas áreas tais como transportes, energia e comunicações para modelagem de diversos tipos de problemas. Uma rede é um conjunto de vértices ou nós ligados entre si por um conjunto de arcos. Nós arcos

20 Capítulo 5 Caso LCL Bicicletas Representação Como Problema de Rede Sem Utilização de Variáveis Dummy

21 Capítulo 5 Caso LCL Bicicletas Representação Como Problema de Rede Com Utilização de Variáveis Dummy

22 Capítulo 5 Regra de Fluxo Balanceado Uma maneira de modelar um problema de rede é seguir a Regra Fluxo Balanceado para cada nó. No Caso de Oferta Total = Demanda Total

23 Capítulo 5 Regra de Fluxo Balanceado Caso a Oferta Total > Demanda Total Caso a Oferta Total < Demanda Total

24 Capítulo 5 Caso LCL Bicicletas Representação Como Problema de Rede =SOMASE($C$4:$C$15;H4;$F$4:$F$15) -SOMASE($A$4:$A$15;H4;$F$4:$F$15)

25 Capítulo 5 Caso LCL Bicicletas Representação Como Problema de Rede

26 Capítulo 5 Caso LCL Bicicletas Representação Como Problema de Rede

27 Capítulo 5 Problema de Transporte Aplicações O problema de transporte não é aplicado apenas a problemas de distribuição de mercadorias das fábricas para centros distribuidores; O mesmo tipo de formulação pode ser aplicado a outros tipos de problema, tais como: Problemas de Escalas de Produção; Problemas de Lay-out de fábricas;

28 Capítulo 5 Caso LCL Fórmula 1 Ltda. A LCL Fórmula 1 Ltda. fornece motores para um grande nº de equipes de fórmula 1. A companhia detém uma série de contratos de entregas futuras programadas para o próximo ano. As entregas deverão ocorrer trimestralmente de acordo com as necessidades das equipes. A tabela resume as entregas programadas, a capacidade máxima de produção, o custo de produção por trimestre e o custo de armazenamento. Formule o problema para achar o número de motores que devem ser fabricados em cada trimestre de maneira a atender os pedidos contratados. * em milhões de reais

29 Capítulo 5 Fonte i = Produção de motores no trimestre i (i=1,..,4) Destino j= entrega dos motores às equipes no trimestre j (j=1,..,4) x ij = nº de motores produzidos no trimestre i para entrega no trimestre j c ij = custo associado ao motor x i D j = nº de pedidos contratados F i = capacidade de produção no mês i Caso LCL Fórmula 1 Ltda , , , ,1251,1101,0951,0801 Oferta5(D)4321 1,110 1,125 1,10 Entrega dos Motores (trimestre) Produção no Trimestre Demanda

30 Capítulo 5 Caso LCL Fórmula 1 Ltda.

31 Capítulo 5 Caso LCL Fórmula 1 Ltda.

32 Capítulo 5 Caso LCL Fórmula 1 Ltda.

33 Capítulo 5 Problemas de Rede de Distribuição Caso Frod Brasil A Frod Brasil terá duas fábricas no Brasil, uma na Bahia e outra em São Paulo, e está estudando a forma de distribuição de seus carros para as diversas revendas de Minas Gerais. A seguir é apresentada a possível rede de distribuição dos veículos, seus custos de transporte unitários, demandas por revenda e as capacidades das fábricas. Formule o Problema de LP que resolva as rotas que devem ser seguidas a partir das fábricas para atender as diversas revendas.

34 Capítulo 5 Problemas de Rede de Distribuição Caso Frod Brasil SP 1 BA oferta demanda

35 Capítulo 5 Variáveis de Decisão x ij – Nº de Carro remetidos de i para j Exemplo: x 14 – Nº de Carro remetidos de 1 para 4 Função-Objetivo = Minimizar o Custo de Distribuição Problemas de Rede de Distribuição Caso Frod Brasil

36 Capítulo 5 Problemas de Rede de Distribuição Caso Frod Brasil Como a oferta total é menor que a demanda total devemos utilizar a seguinte restrição em todos os nós: Entradas – Saídas < Oferta / Demanda no nó

37 Capítulo 5 Problemas de Rede de Distribuição Caso Frod Brasil

38 Capítulo 5 Problemas de Rede de Distribuição Caso Frod Brasil

39 Capítulo 5 Problemas de Rede de Distribuição Caso Frod Brasil

40 Capítulo 5 Problemas de Rede de Distribuição Caso Frod Brasil

41 Capítulo 5 A LCL Eletrodomésticos Ltda. deseja realizar o escalonamento de sua produção para os próximos 4 meses. Sua fábrica pode produzir mensalmente em horário normal 150 ferros de passar a um custo de R$5, e em horário extra, 50 unidades a um custo de R$ 7. Considere que é possível armazenar durante um mês a um custo unitário de R$1. Suponha que as demandas para os próximos quatro meses são de 120, 200,120 e 180. Caso LCL Eletrodomésticos Ltda.

42 Capítulo 5 Caso LCL Eletrodomésticos Ltda. Para resolver este problema, criaremos uma rede onde: Cada nó representará uma unidade produtora ou unidade receptora. São 8 unidades produtoras (2 por mês), e 5 unidades receptoras (4 meses mais o Dummy – visto que a capacidade produtiva é maior que a demanda); Cada arco está relacionado ao custo de produção ou armazenagem.

43 Capítulo 5 Caso LCL Eletrodomésticos Ltda D +180 C +120 B +200 A Dummy E =

44 Capítulo 5 Caso LCL Eletrodomésticos Ltda. =SOMASE($C$3:$C$21;F15;$E$3:$E$21) -SOMASE($B$3:$B$21;F15;$E$3:$E$21) =somarproduto (D3:D21;E3:E21)

45 Capítulo 5 Caso LCL Eletrodomésticos Ltda.

46 Capítulo 5 Problemas de Menor Caminho Se considerarmos uma rede na qual o arco signifique a distância entre dois pontos (nós) e desejarmos achar a rota que une estes pontos com distância mínima, teremos um problema do tipo do Menor caminho. Este tipo de problema pode ser generalizado e aplicado a distribuição de produtos, entre outros.

47 Capítulo 5 Problemas de Menor Caminho Exemplo Considere a rede abaixo que representa a ligação rodoviária entre duas cidades (A e B). O tamanho dos arcos representa a distância entre pontos da malha rodoviária entre as cidades. A B

48 Capítulo 5 Este problema pode ser visto como um problema de rede de distribuição com um ponto de oferta de um caminhão (A=-1) e ponto de demanda de um caminhão (B=+1) e os demais pontos da malha sem demanda ou oferta (=0) Problemas de Menor Caminho Exemplo [-1][+1] A B

49 Capítulo 5 Problemas de Menor Caminho Exemplo

50 Capítulo 5 Problemas de Menor Caminho Exemplo

51 Capítulo 5 Problemas de Menor Caminho Solução

52 Capítulo 5 Problema do Fluxo Máximo Nesse tipo de problema temos uma rede de nós e arcos, e desejamos que o maior fluxo de uma grandeza possa fluir de um determinado nó para outro. Nesse tipo de problema mais de um caminho pode ser utilizado simultaneamente. Aplicações Rede de distribuição de água, luz, gás e tráfego na internet.

53 Capítulo 5 Como resolver o problema? Adicionar um arco artificial ligando o ponto de saída (A) ao ponto de chegada (B). Maximizar o fluxo no arco artificial criado (fluxo grande). Utilizar a regra de balanceamento de redes. As grandezas associadas aos arcos são o fluxo máximo em cada trecho da rede, portanto restrições no modelo. O Valor de Oferta/Demanda em cada nó é igual a zero. Problemas de Rede Problema do Fluxo Máximo

54 Capítulo 5 Problemas de Rede Problema do Fluxo Máximo 30 A B A B

55 Capítulo 5 Problemas de Rede Problema do Fluxo Máximo

56 Capítulo 5 Problemas de Rede Problema do Fluxo Máximo

57 Capítulo 5 Problemas de Rede Problema do Fluxo Máximo

58 Capítulo 5 Problemas de Rede Problema do Fluxo Máximo


Carregar ppt "Capítulo 5 Pesquisa Operacional na Tomada de Decisões 2ª Edição © Gerson Lachtermacher,2005 Problemas de Rede."

Apresentações semelhantes


Anúncios Google