A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Geodesia e Cartografia Topografia – Engenharia Civil Luis Machado Instituto Politécnico de Beja Escola Superior de Tecnologia e Gestão.

Apresentações semelhantes


Apresentação em tema: "Geodesia e Cartografia Topografia – Engenharia Civil Luis Machado Instituto Politécnico de Beja Escola Superior de Tecnologia e Gestão."— Transcrição da apresentação:

1 Geodesia e Cartografia Topografia – Engenharia Civil Luis Machado Instituto Politécnico de Beja Escola Superior de Tecnologia e Gestão

2 O elipsóide de revolução achatado nos pólos é o modelo matemático que mais se aproxima à forma da Terra. Os parâmetros que dão a forma e a dimensão ao elipsóide são por exemplo: o achatamento polar (f), o semi-eixo maior (a) e o semi-eixo menor (b). Os parâmetros que dão a forma e a dimensão ao elipsóide são por exemplo: o achatamento polar (f), o semi-eixo maior (a) e o semi-eixo menor (b). No caso do elipsóide de referência WGS84 tem-se: No caso do elipsóide de referência WGS84 tem-se: a= m b= m f=1/298,

3 As posições relativas entre vários lugares são determinadas nesta superfície de referência. As posições relativas entre vários lugares são determinadas nesta superfície de referência. São medidas as coordenadas geodésicas: latitude, longitude e altitude elipsoidal São medidas as coordenadas geodésicas: latitude, longitude e altitude elipsoidal

4 Quando se pretende definir a posição de um ponto fora da superfície da Terra (caso dos satélites GPS), é mais cómodo utilizar as coordenadas cartesianas tridimensionais (X,Y,Z). Quando se pretende definir a posição de um ponto fora da superfície da Terra (caso dos satélites GPS), é mais cómodo utilizar as coordenadas cartesianas tridimensionais (X,Y,Z). A relacção entre as coordenadas geodésicas elipsóidais e cartesianas tridimensionais é dada por: A relacção entre as coordenadas geodésicas elipsóidais e cartesianas tridimensionais é dada por: x = (R N +h) Cos( )Cos( ) y = (R N +h)Cos( )Sen( ) z = [R N (1-e 2 )+h]Sen( )

5 O geóide é portanto a superfície de referência para a contagem das altitudes (H), designadas ortométricas. O geóide é portanto a superfície de referência para a contagem das altitudes (H), designadas ortométricas. Como existem duas superfícies de referência para altitudes (o elipsóide e o geóide) é necessário estabelecer uma relação entre elas. Como existem duas superfícies de referência para altitudes (o elipsóide e o geóide) é necessário estabelecer uma relação entre elas. A ondulação do geóide (N), dá-nos essa relação, é a diferença entre a altitude elipsóidal e a altitude ortómetrica. A ondulação do geóide (N), dá-nos essa relação, é a diferença entre a altitude elipsóidal e a altitude ortómetrica. N = h - H A altitude elipsoidal (h) é medida ao longo da normal ao elipsóide, desde o ponto da superfície terrestre até ao ponto homólogo (projectado) na superfície do elipsóide (altitude dada pelo sistema GPS) A altitude elipsoidal (h) é medida ao longo da normal ao elipsóide, desde o ponto da superfície terrestre até ao ponto homólogo (projectado) na superfície do elipsóide (altitude dada pelo sistema GPS) Nos trabalho de topografia a altitude utilizada (h), ou cota, é medida ao longo do arco da linha de fio prumo, desde o ponto da superfície terrestre até ao ponto homólogo que se encontra na superfície média das aguas do mar (Geóide) Nos trabalho de topografia a altitude utilizada (h), ou cota, é medida ao longo do arco da linha de fio prumo, desde o ponto da superfície terrestre até ao ponto homólogo que se encontra na superfície média das aguas do mar (Geóide)

6

7 Os data geodésicos e altimétricos Um datum geodésico é o conjunto dos parâmetros que definem o elipsóide de referência quanto à forma e quanto à posição relativamente à Terra (planimetria, i.e., 2D) Um datum altimétrico define a posição do geóide num ponto que servirá de referência à contagem das altitudes ortométricas (exemplo: datum altimétrico de Cascais)

8 Um datum geodésico diz-se local quando o posicionamento do elipsóide é feito numa estação terrestre, cujas coordenadas foram medidas por métodos astrogeodésicos. Um datum geodésico diz-se global quando o posicionamento do elipsóide é feito de forma que o seu centro coincida com o centro de massa da Terra, e o seu eixo polar coincida com a posição média do eixo de rotação da Terra. Os data geodésicos locais e globais

9 Datum LocalDatum Global Os data geodésicos locais e globais

10 Os data geodésicos utilizados em Portugal NomeElipsóidePonto de fixaçãoUtilização Datum Lisboa (antigo) Puissant Torre do Castelo de S. Jorge Actualmente não é utilizado Datum Lisboa Hayford Torre do Castelo de S. Jorge Cartografia do continente (Exemplo, carta 1:50000 do IGP e 1:25000 do IGeoE) Datum 73HayfordMelriça-Vila de Rei Cartografia do continente mais recente (Exemplo, ortofotomapas 1:10000 do IGeoE) Datum Europeu ED50 Hayford Potsdam (Alemanha) Cartografia do continente WGS84 Não tem (datum global) Sistema de Posicionamento Global (GPS)

11 A transformação de Molodensky é utilizada para transformar coordenadas geodésicas elipsóidais num datum (por exemplo:datum WGS84) noutras coordenadas elipsóidais num outro datum (por exemplo:datum 73) Transformação de coordenadas geodésicas em data diferentes Transformação de Molodensky Os parâmetros utilizados nesta transformação são: a diferença entre as origens dos elipsóides (D Xo, D Yo, D Zo ), a diferença entre os semi-eixos maiores ( a) e a diferença dos achatamentos ( f)

12 Datum 73 Vs Datum WGS84 Transformação de coordenadas geodésicas em data diferentes Transformação de Molodensky

13 Os parâmetros de transformação de Molodensky do Instituto Geográfico Português para transformar coordenadas WGS84 nos data locais portugueses são os seguintes: Datum x 0 (m) y 0 (m) z 0 (m) a f Dt DtLx Transformação de coordenadas geodésicas em data diferentes Transformação de Molodensky

14 * = + h* = h + h Transformação de coordenadas geodésicas em data diferentes Transformação de Molodensky

15 A transformação de Bursa-Wölf é utilizada para transformar coordenadas cartesianas tridimensionais num datum (e.g.:datum WGS84) noutras coordenadas cartesianas num outro datum (e.g.:datum 73) Os parâmetros utilizados nesta transformação são: a diferença entre as origens dos elipsóides (D Xo, D Yo, D Zo ), as rotações em torno dos eixos (,, ) e um factor de escala ( ) Transformação de coordenadas geodésicas em data diferentes Transformação de Bursa - Wolf

16 Os parâmetros de transformação de Bursa-Wölf do IGP para transformar coordenadas WGS84 nos data locais portugueses são os seguintes: Datum (ppm) k (dmgon) (dmgon) x (m) y (m) z (m) Dt DtLx Transformação de coordenadas geodésicas em data diferentes Transformação de Bursa - Wolf

17

18 Projecções cartográficas Transformação da superfície elipsoidal num plano. Correspondência biunívoca entre pontos da superfície elipsoidal e pontos num plano

19 É uma projecção cónica Cone disposto na posição polar É uma projecção equivalente Ponto central da projecção: 0 = 39º 40N o = 8º W Grw (1º E Lx) Projecção de Bonne

20 Projecção de Gauss-Krüger É uma projecção cilíndrica cilindro disposto na posição transversa É uma projecção conforme Ponto central da projecção: 0 = 39º 40N o = 8º W Grw (1º E Lx)

21 Transformação de coordenadas Bursa-Wolf Molodensky Coords Cartográficas datum 1, elipsóide 1 Projecção 1 (M 1,P 1,H) Coords Geodésicas elipsóidais datum 1 elipsóide 1 (,,h 1 ) Coords cartesianas tridimensionais datum 1 elipsóide 1 (X 1,Y 1,Z 1 ) Coords Cartográficas datum 2, elipsóide 2 Projecção 2 (M 2,P 2,H) Coords Geodésicas elipsóidais datum 2 elipsóide 2 ( 2,2, 2,h 2 ) Coords cartesianas tridimensionais datum 2 elipsóide 2 (X 2,Y 2,Z 2 ) Bursa-Wolf Molodensky Interpolações


Carregar ppt "Geodesia e Cartografia Topografia – Engenharia Civil Luis Machado Instituto Politécnico de Beja Escola Superior de Tecnologia e Gestão."

Apresentações semelhantes


Anúncios Google