A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Professor: José Tiago Pereira Barbosa

Apresentações semelhantes


Apresentação em tema: "Professor: José Tiago Pereira Barbosa"— Transcrição da apresentação:

1 Professor: José Tiago Pereira Barbosa
Ligações Químicas Professor: José Tiago Pereira Barbosa 2013

2 VocÊ pode resposnder as seguintes perguntas?
Por que os átomos se combinam para formar moléculas e como? Como os átomos se mantêm unidos numa ligação química? Por que a molécula de água tem uma ligação química num ângulo de 104,5º? Por que as moléculas do DNA, portador do código genético se ligam em curiosas formas como hélice? Por que os materiais de construção apresentam resistência ao corte ou esforço menores do que o valor teórico esperado?

3 UM POUCO DE HISTÓRIA Os átomos raramente podem ser encontrados isoladamente. As ligações químicas unem os átomos, porém nem todos os átomos conseguem formar ligações. Dois átomos de um gás nobre exercem entre si uma atração mútua tão fraca que não conseguem formar uma molécula. Por outro lado, a maioria dos átomos forma ligações fortes com átomos da própria espécie e com outros tipos de átomos. Historicamente, a propriedade dos átomos de formar ligações foi descrita como sendo a sua valência. Este conceito é pouco utilizado atualmente. Hoje o termo é usado como adjetivo como, por exemplo, elétron de valência ou camada de valência.

4 UM POUCO DE HISTÓRIA Quando o conceito de valência foi introduzido não se tinha o conhecimento de elétrons, prótons e nêutrons. O descobrimento do elétron, em 1897, possibilitou o desenvolvimento das teorias de valência e das ligações químicas. Em 1901, o químico Gilbert Newton Lewis tentou explicar a tabela periódica em termos de distribuição eletrônica, porém, o conhecimento mais detalhado da distribuição dos elétrons nos átomos só estaria disponível anos mais tarde, com o desenvolvimento da mecânica quântica.

5 UM POUCO DE HISTÓRIA Lewis propôs, em 1916, uma forma de representação em termos de diagramas estruturais onde os elétrons aparecem como pontos. Um pouco antes dessa data, Ernest Rutherford havia mostrado que o número total de elétrons em um átomo neutro era igual ao seu número de ordem sequencial, ou número atômico, na tabela periódica. A teoria de Lewis é frequentemente chamada de teoria do octeto, por causa do agrupamento cúbico de oito elétrons.

6 Ligação Química – ALGUMAS CONSIDERAÇÕES
O conceito de configuração eletrônica e o desenvolvimento da Tabela Periódica permitiu aos químicos uma base lógica para explicar a formação de moléculas e outros compostos. A explicação de Kossel e Lewis é que os átomos reagem de forma a alcançar uma configuração eletrônica mais estável (correspondendo à configuração de um gás nobre.) O que é uma ligação química? É o conjunto de forças que mantém os átomos unidos entre si, dando origem a moléculas ou compostos iônicos / metálicos. Em todos os tipos de ligação química as forças de ligação são essencialmente eletrostáticas, isto é, forças entre cargas elétricas.

7 H preferencialmente ganha 1 elétron N preferencialmente
Camada de Valência (Comporta um máximo de 8 elétrons) Camada Interna (Comporta um máximo de 2 elétrons) Elétron Hidrogênio Nº Atômico = 1 Carbono Nº Atômico = 6 Nitrogênio Nº Atômico = 7 Oxigênio Nº Atômico = 8 Regra do Octeto = os átomos tendem a ganhar, perder ou compartilhar elétrons, de tal forma que tenham 8 elétrons na camada de valência. H preferencialmente N preferencialmente O preferencialmente ganha 1 elétron ganha 3 elétrons ganha 2 elétrons

8 Os elétrons mais externos do átomo são os responsáveis pela
Se dois átomos combinarem entre si, dizemos que foi estabelecida entre eles uma LIGAÇÃO QUÍMICA Os elétrons mais externos do átomo são os responsáveis pela ocorrência da ligação química

9 Na Cl H H Para ocorrer uma ligação química é necessário que os átomos
percam ou ganhem elétrons, ou, então, compartilhem seus elétrons de sua última camada + O SÓDIO PERDEU ELÉTRON Na Cl O CLORO GANHOU ELÉTRON H H OS ÁTOMOS DE HIDROGÊNIO COMPARTILHARAM ELÉTRONS

10 semelhante à de um gás nobre, isto é,
Na maioria das ligações, os átomos ligantes possuem distribuição eletrônica semelhante à de um gás nobre, isto é, apenas o nível K, completo, ou, 8 elétrons em sua última camada Esta idéia foi desenvolvida pelos cientistas Kossel e Lewis e ficou conhecida como TEORIA DO OCTETO

11 H (Z = 1) 1s1 He (Z = 2) 1s2 F (Z = 9) 2s2 2p5 1s2 Ne (Z = 10) 2s2 2p6
Um átomo que satisfaz A TEORIA DO OCTETO é estável e é aplicada principalmente para os elementos do subgrupo A (representativos) da tabela periódica H (Z = 1) 1s1 INSTÁVEL He (Z = 2) 1s2 ESTÁVEL F (Z = 9) 2s2 2p5 1s2 INSTÁVEL Ne (Z = 10) 2s2 2p6 1s2 ESTÁVEL Na (Z = 11) 3s1 2s2 2p6 1s2 INSTÁVEL

12 Na maioria das vezes, os átomos que:
Perdem elétrons são os metais das famílias 1A, 2A e 3A Recebem elétrons são ametais das famílias 5A, 6A e 7A

13 01) Os átomos pertencentes à família dos metais alcalinos terrosos e dos halogênios adquirem configuração eletrônica de gases nobres quando, respectivamente, formam íons com números de carga: a) e – 1. b) – 1 e + 2. c) e – 1. d) – 2 e – 2. e) e – 2. ALCALINOS TERROSOS PERDE 2 ELÉTRONS FAMÍLIA 2A + 2 GANHA 1 ELÉTRONS HALOGÊNIOS FAMÍLIA 7A – 1

14 02) Um átomo X apresenta 13 prótons e 14 nêutrons. A carga
do íon estável formado a partir deste átomo será: a) – 2. b) – 1. c) + 1. d) + 2. e) + 3. X (Z = 13) 1s2 2s2 2p6 3s2 3p1 PERDE 3 ELÉTRONS ÚLTIMA CAMADA 3 ELÉTRONS + 3

15 LIGAÇÃO IÔNICA ou ELETROVALENTE

16 LIGAÇÃO IÔNICA ou ELETROVALENTE
Esta ligação ocorre devido à ATRAÇÃO ELETROSTÁTICA entre íons de cargas opostas Na ligação iônica os átomos ligantes apresentam uma grande diferença de eletronegatividade , isto é, um é METAL e o outro AMETAL

17 Na Na Cl Cl CLORETO DE SÓDIO
LIGAÇÃO ENTRE O SÓDIO (Z = 11) E CLORO (Z = 17) Na (Z = 11) 1s2 2s2 2p6 3s1 PERDE 1 ELÉTRON Cl (Z = 17) 1s2 2s2 2p6 3s2 3p5 RECEBE 1 ELÉTRON + + Na Na Cl Cl CLORETO DE SÓDIO

18 UMA REGRA PRÁTICA Para compostos iônicos poderemos usar na obtenção da fórmula final o seguinte esquema geral x y C A

19 01) A camada mais externa de um elemento X possui 3 elétrons, enquanto a camada mais externa de outro elemento Y tem 6 elétrons. Uma provável fórmula de um composto, formado por esses elementos é: a) X2Y3. b) X6Y. c) X3Y. d) X6Y3. e) XY. X perde 3 elétrons X3+ Y ganha 2 elétrons Y 2– 3 2 X Y

20 X Y X (Z = 20) 1s2 2s2 2p6 3s2 3p6 4s2 X perde 2 elétrons X 2+
02) O composto formado pela combinação do elemento X (Z = 20) com o elemento Y (Z = 9) provavelmente tem fórmula: a) XY. b) XY2. c) X3Y. d) XY3. e) X2Y. X (Z = 20) 1s2 2s2 2p6 3s2 3p6 4s2 X perde 2 elétrons X 2+ Y (Z = 9) 1s2 2s2 2p5 ganha 1 elétron 1 – Y Y 2 1 X Y

21 LIGAÇÃO COVALENTE ou MOLECULAR
A principal característica desta ligação é o compartilhamento (formação de pares) de elétrons entre os dois átomos ligantes Os átomos que participam da ligação covalente são AMETAIS, SEMIMETAIS e o HIDROGÊNIO Os pares de elétrons compartilhados são contados para os dois átomos ligantes

22 LIGAÇÃO COVALENTE NORMAL
É quando cada um dos átomos ligantes contribui com um elétron para a formação do par

23 Consideremos, como primeiro exemplo, a união entre dois átomos do
ELEMENTO HIDROGÊNIO (H) para formar a molécula da substância SIMPLES HIDROGÊNIO (H2) H (Z = 1) 1s1 H H FÓRMULA ELETRÔNICA H H FÓRMULA ESTRUTURAL PLANA H H FÓRMULA MOLECULAR 2

24 N N N N2 N (Z = 7) 2s2 2p3 1s2 FÓRMULA ELETRÔNICA
Consideremos, como segundo exemplo, a união entre dois átomos do ELEMENTO NITROGÊNIO (N) para formar a molécula da substância SIMPLES NITROGÊNIO (N2) N (Z = 7) 2s2 2p3 1s2 N N FÓRMULA ELETRÔNICA N FÓRMULA ESTRUTURAL PLANA N2 FÓRMULA MOLECULAR

25 FÓRMULA ESTRUTURAL PLANA
Consideremos, como terceiro exemplo, a união entre dois átomos do ELEMENTO HIDROGÊNIO e um átomo do ELEMENTO OXIGÊNIO para formar a substância COMPOSTA ÁGUA (H2O) H (Z = 1) 1s1 O (Z = 8) 1s2 2s2 2p4 O H H FÓRMULA ELETRÔNICA O H H FÓRMULA ESTRUTURAL PLANA H2O FÓRMULA MOLECULAR

26 Cl N Cl Cl N Cl 3 01) Os elementos químicos N e Cl podem combinar-se
formando a substância: Dados: N (Z = 7); Cl (Z = 17) a) NCl e molecular. b) NCl2 e iônica. c) NCl2 e molecular. d) NCl3 e iônica. e) NCl3 e molecular. Cl N Cl Cl N Cl 3 como os dois átomos são AMETAIS a ligação é molecular (covalente) N (Z = 7) 1s2 2s2 2p3 Cl (Z = 17) 1s2 2s2 2p6 3s2 3p5

27 Cl O C Cl CO(g) + Cl2(g)  COCl2(g)
02) (UESPI) O fosfogênio (COCl2), um gás incolor, tóxico, de cheiro penetrante, utilizado na Primeira Guerra Mundial como gás asfixiante, é produzido a partir da reação: CO(g) + Cl2(g)  COCl2(g) Sobre a molécula do fosfogênio, podemos afirmar que ela apresenta: a) duas ligações duplas e duas ligações simples b) uma ligação dupla e duas ligações simples c) duas ligações duplas e uma ligação simples d) uma ligação tripla e uma ligação dupla e) uma ligação tripla e uma simples Cl O C Cl

28 H O C X O H O 03) Observe a estrutura genérica representada abaixo;
Para que o composto esteja corretamente representado, de acordo com as ligações químicas indicadas na estrutura, X deverá ser substituído pelo seguinte elemento: fósforo enxofre carbono nitrogênio cloro

29 COVALENTE DATIVA ou COORDENADA
Se apenas um dos átomos contribuir com os dois elétrons do par, a ligação será COVALENTE DATIVA ou COORDENADA A ligação dativa é indicada por uma seta que sai do átomo que cede os elétrons chegando no átomo que recebe estes elétrons, através do compartilhamento

30 S O O S O O S O 2 FÓRMULA ELETRÔNICA FÓRMULA ESTRUTURAL PLANA
Vamos mostrar a ligação DATIVA, inicialmente, na molécula do dióxido de enxofre (SO2), onde os átomos de oxigênio e enxofre possuem 6 elétrons na camada de valência S O FÓRMULA ELETRÔNICA O S O FÓRMULA ESTRUTURAL PLANA O S O FÓRMULA MOLECULAR 2

31 01) O gás carbônico (CO2) é o principal responsável pelo efeito estufa, enquanto
o dióxido de enxofre (SO2) é um dos principais poluentes atmosféricos. Se considerarmos uma molécula de CO2 e uma molécula de SO2, podemos afirmar que o número total de elétrons compartilhados em cada molécula é respectivamente igual a: Dados: números atômicos: C = 6; 0 = 8; S = 16. 4 e 3. 2 e 4. 4 e 4. 8 e 4. 8 e 6. O C O O S O

32 X 02) Certo átomo pode formar 3 covalências normais e 1 dativa. Qual
a provável família desse elemento na classificação periódica? a) 3 A . b) 4 A . c) 5 A . d) 6 A . e) 7 A . X 5 A

33 H Be H H Be H Hoje são conhecidos compostos que não obedecem
DESOBEDIÊNCIA À REGRA DO OCTETO Hoje são conhecidos compostos que não obedecem à regra do OCTETO Átomos que ficam estáveis com menos de 8 elétrons na camada de valência H Be H H Be H O berílio ficou estável com 4 elétrons na camada de valência

34 O boro ficou estável com 6 elétrons
na camada de valência

35 Átomos que ficam estáveis com mais de 8 elétrons
na camada de valência S F O enxofre ficou estável com 12 elétrons na camada de valência

36 O fósforo ficou estável com 10 elétrons
P Cl O fósforo ficou estável com 10 elétrons na camada de valência

37 O N Átomo que fica estável com número impar de elétrons
na camada de valência O N O nitrogênio ficou estável com 7 elétrons na camada de valência.

38 F Xe Compostos dos gases nobres
Recentemente foram produzidos vários compostos com os gases nobres Estes compostos só ocorrem com gases nobres de átomos grandes, que comportam a camada expandida de valência

39 01) (PUC-SP) Qual das seguintes séries contém todos os compostos covalentes, cuja estabilização ocorre sem que atinjam o octeto? a) BeCl2, BF3, H3BO3, PCl5. b) CO, NH3, HClO, H2SO3. c) CO2, NH4OH, HClO2, H2SO4. d) HClO3, HNO3, H2CO3, SO2. e) HCl, HNO3, HCN, SO3.

40 02) (PUC – RJ) Observa-se que, exceto o hidrogênio, os outros
elementos dos grupos IA a VIIIA da tabela periódica tendem a formar ligações químicas de modo a preencher oito elétrons na última camada. Esta é a regra do octeto. Mas, como toda regra tem exceção, assinale a opção que mostra somente moléculas que não obedecem a esta regra: BH3 CH4 H2O HCl XeF6 I II III IV V a) I, II e III. b) II, II e IV. c) IV e V. d) I e IV. e) I e V.

41 GEOMETRIA MOLECULAR A forma geométrica de uma molécula pode ser
obtida a partir de vários meios, entre os quais destacamos as REGRAS DE HELFERICH, que podem ser resumidas da seguinte forma:

42 H MOLÉCULAS DO TIPO "AX " O C 2
Estas moléculas podem ser LINEARES ou ANGULARES O C H Se o átomo central “A” possui um ou mais pares de elétrons disponíveis, a molécula é ANGULAR Se o átomo central “A” não possui par de elétrons disponíveis, a molécula é LINEAR

43 Estas moléculas podem ser TRIGONAL PLANA ou PIRAMIDAL
MOLÉCULAS DO TIPO "AX " 3 Estas moléculas podem ser TRIGONAL PLANA ou PIRAMIDAL B F N Cl Se o átomo central “A” não possui par de elétrons disponíveis a geometria da molécula será TRIGONAL PLANA Se o átomo central “A” possui par de elétrons disponíveis a geometria da molécula será PIRAMIDAL

44 Estas moléculas terão uma geometria
MOLÉCULAS DO TIPO "AX " 4 Estas moléculas terão uma geometria TETRAÉDRICA C Cl

45 Estas moléculas terão uma geometria
MOLÉCULAS DO TIPO "AX " 5 Estas moléculas terão uma geometria BIPIRÂMIDE TRIGONAL moléculas do PCl 5

46 Estas moléculas terão uma geometria
MOLÉCULAS DO TIPO "AX " 6 Estas moléculas terão uma geometria OCTAÉDRICA moléculas do SF6

47 01) Dados os compostos covalentes, com as respectivas estruturas:
I : BeH linear. II : CH tetraédrica. III : H2O linear. IV : BF piramidal. V : NH trigonal plana. Verdadeiro Verdadeiro Falso Falso Falso Pode-se afirmar que estão corretas: a) apenas I e II. b) apenas II, IV e V. c) apenas II, III e IV. d) apenas I, III e V. e) todas.

48 possui par de elétrons disponíveis a geometria da molécula será
02) As moléculas do CH4 e NH3 apresentam, as seguintes respectivamente, as seguintes geometrias: a) quadrada plana e tetraédrica. b) pirâmide trigonal e angular. c) quadrada plana e triangular plana. d) pirâmide tetragonal e quadrada plana. e) tetraédrica e pirâmide triangular. Se o átomo central “A” possui par de elétrons disponíveis a geometria da molécula será PIRAMIDAL CH4 N H H Estas moléculas terão uma geometria TETRAÉDRICA H

49 é mais eletronegativo que o
LIGAÇÕES POLARES E APOLARES H Cl CLORO é mais eletronegativo que o HIDROGÊNIO A ligação entre os átomos de cloro e hidrogênio é POLAR

50 H A ligação entre os átomos de hidrogênio é APOLAR
LIGAÇÕES POLARES E APOLARES H A ligação entre os átomos de hidrogênio é APOLAR Os dois átomos possuem a mesma ELETRONEGATIVIDADE

51 MOLÉCULAS POLARES e APOLARES
A polaridade de uma molécula que possui mais de dois átomos é expressa pelo VETOR MOMENTO DE DIPOLO RESULTANTE ( ) u Se ele for NULO, a molécula será APOLAR; caso contrário, POLAR.

52 O C O MOLÉCULA DO " CO " 2 A resultante das forças é nula
(forças de mesma intensidade, mesma direção e sentidos opostos) A molécula do CO2 é APOLAR

53 A resultante das forças é
MOLÉCULA DA ÁGUA " H O" 2 O A resultante das forças é diferente de ZERO H H A molécula da água é POLAR

54 01) Assinale a opção na qual as duas substâncias são apolares:
a) NaCl e CCl4. b) HCl e N2. c) H2O e O2. d) CH4 e Cl2. e) CO2 e HF. CH4, CCl4, CO2, N2, O2, Cl2. CH4 e CCl4 têm geometria TETRAÉDRICA com todos os ligantes do carbono iguais, portanto, são APOLARES N2, O2 e Cl2 são substâncias SIMPLES, portanto, são APOLARES CO2 tem geometria LINEAR com todos os ligantes do carbono iguais, portanto, é APOLAR

55 piramidal, portanto, é POLAR
02) (UFES) A molécula que apresenta momento dipolar diferente de zero (molecular polar) é: a) CS2. b) CBr4. c) BCl3. d) BeH2. e) NH3. NH3 tem geometria piramidal, portanto, é POLAR

56 S C S H Br N N CH4 I) CH4 II) CS2 III) HBr IV) N2 moléculas LINEARES
03) (UFRS) O momento dipolar é a medida quantitativa da polaridade de uma ligação. Em moléculas apolares, a resultante dos momentos dipolares referentes a todas as ligações apresenta valor igual a zero. Entre as substâncias covalentes abaixo: I) CH II) CS III) HBr IV) N2 Quais as que apresentam a resultante do momento dipolar igual a zero? S C S H Br N N moléculas LINEARES com ligantes iguais são APOLARES moléculas DIATÔMICAS com ligantes diferentes são POLARES moléculas DIATÔMICAS com ligantes iguais são APOLARES CH4 Molécula tetraédrica que são APOLARES

57 LIGAÇÕES INTERMOLECULARES
São as ligações que resultam da interação ENTRE MOLÉCULAS, isto é, mantêm unidas moléculas de uma substância As ligações INTERMOLECULARES podem ser em: Dipolo permanente – dipolo permanente Dipolo induzido – dipolo induzido ou forças de dispersão de London Ponte de hidrogênio

58 Em uma MOLÉCULA POLAR sua
DIPOLO - DIPOLO Em uma MOLÉCULA POLAR sua extremidade NEGATIVA atrai a extremidade POSITIVA da molécula vizinha, o mesmo ocorre com sua extremidade positiva que interage com a parte negativa de outra molécula vizinha + + + + + +

59 DIPOLO INDUZIDO Nas moléculas APOLARES, uma nuvem
de elétrons se encontra em constante movimento H H H H Se, durante uma fração de segundo, esta nuvem eletrônica estiver deslocada para um dos extremos da molécula, pode-se dizer que foi criado um DIPOLO INDUZIDO, isto é, por um pequeno espaço a molécula possui PÓLOS

60 PONTES DE HIDROGÊNIO Um caso extremo de atração dipolo – dipolo ocorre quando temos o HIDROGÊNIO ligado a átomos pequenos e muito eletronegativos, especialmente o FLÚOR, o OXIGÊNIO e o NITROGÊNIO. Esta forte atração chama-se PONTE DE HIDROGÊNIO, sendo verificada nos estados sólido e líquido H F

61 O H As pontes de hidrogênio são mais intensas que
as forças dipolo – dipolo permanente, e estas mais intensas que as interações dipolo – dipolo induzido

62 01) Compostos de HF, NH3 e H2O apresentam pontos de
fusão e ebulição maiores quando comparados com H2S e HCl, por exemplo, devido às: a) forças de Van Der Waals. b) forças de London. c) pontes de hidrogênio. d) interações eletrostáticas. e) ligações iônicas.

63 02) (UCDB-DF) O CO2 no estado sólido (gelo seco) passa diretamente
para o estado gasoso em condições ambiente; por outro lado, o gelo comum derrete nas mesmas condições em água líquida, a qual passa para o estado gasoso numa temperatura próxima a 100°C. Nas três mudanças de estados físicos, respectivamente, são rompidas: ligações covalentes, pontes de hidrogênio e pontes de hidrogênio. b) interações de Van der Waals, ligações iônicas e ligações iônicas. c) interações de Van der Waals, pontes de hidrogênio e ligações covalentes. d) interações de Van der Waals, pontes de hidrogênio e pontes de hidrogênio. e) interações de Van der Waals, pontes de hidrogênio e interações de Van der Waals.

64 03) Considere o texto abaixo.
“Nos icebergs, as moléculas polares da água associam-se por No gelo seco, as moléculas apolares do dióxido de carbono unem-se por Conseqüentemente, a 1 atm de pressão, é possível prever que a mudança de estado de agregação do gelo ocorra a uma temperatura do que a do gelo seco.” I PONTES DE HIDROGÊNIO II FORÇAS DE VAN DER WAALS MAIOR III Para completá-lo corretamente, I, II e III devem ser substituídos, respectivamente, por: a) Forças de London, pontes de hidrogênio e menor. b) Pontes de hidrogênio, forças de Van der Waals e maior. c) Forças de Van der Waals, pontes de hidrogênio e maior. d) Forças de Van der Waals, forças de London e menor. e) Pontes de hidrogênio, pontes de hidrogênio e maior.


Carregar ppt "Professor: José Tiago Pereira Barbosa"

Apresentações semelhantes


Anúncios Google