A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Digital Image Processing, 3rd ed. www.ImageProcessingPlace.com © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations.

Apresentações semelhantes


Apresentação em tema: "Digital Image Processing, 3rd ed. www.ImageProcessingPlace.com © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations."— Transcrição da apresentação:

1 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering O capítulo 3 trata de transformações de intensidade e filtragem espacial. Os processos no domínio espacial são denotados por: onde f(x,y) é a imagem de entrada, g(x,y) é a imagem de saída e T é um operador sobre f definido sobre uma vizinhança do ponto (x,y).

2 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Uma vizinhança 3x3 em torno de um ponto (x,y) numa imagem no domínio espacial. A vizinhança é movida pixel a pixel na imagem para gerar uma imagem de saída.

3 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Quando a vizinhança é de tamanho 1x1, g depende somente do valor de f no único elemento em (x,y) e T é uma função de transformação de intensidade: s = T(r).

4 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Funções de transformação de intensidade. (a)Extensão de contraste (constrast stretching function) (b) Limiar (thresholding function)

5 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Algumas funções básicas de transformação de intensidade. Todas as curvas foram escala- das para enquadrar no intervalo mostrado.

6 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Mamografia digital original. (b) Imagem negativa obtida usando a trans- formação negativa.

7 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Espectro de Fourier. (b)Resultado da aplicação da transformação log com c = 1.

8 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Gráficos da equação s = cr para valores de (c=1) em todos os casos.

9 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Imagem rampa de intensidade. (b) Imagem vista num monitor com gamma de 2.5 (c) Imagem com correção de gamma. (d) Imagem corrigida vista no monitor

10 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Imagem MRI de uma espinha humana fraturada (b) – (d) Resultado da aplicação da eq com c = 1 e = 0.6, 0.4 e 0.3 respectivamente. Eq : s = cr

11 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Imagem aérea. (b)- (d) Resultado da aplicação da eq com c = 1 e = 3.0, 4.0 e 5.0 respectivamente.

12 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Função de transformação de intensidade por partes.

13 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Extensão do contraste. (a)Forma da função de transformação. (b) Imagem de baixo contraste. (c) Resultado. (d) Resultado da limiarização (thresholding)

14 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Essa transformação intensifica o intervalo de intensidade [A,B] e reduz todas as intensidades a um nível menor. (b) Essa transformação intensifica o intervalo de intensidade [A,B] e preserva todos os outros níveis de intensidade.

15 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Angiograma aórtica. (b)Resultado usando a transformação da Fig. 3.11(a). (c) Resultado usando a transformação da Fig. 3.11(b)

16 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Representação plano-de-bits (bit-plane) de uma imagem de 8 bits.

17 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Uma imagem de 8 bits de tamanho 500x1192. (b)- (i) plano-de-bits de 1 a 8, sendo o plano 1, menos signif.

18 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Imagens reconstruídas usando: (a)plano-de-bits 8 e 7 (b)plano-de-bits 8, 7 e 6 e (c)plano-de-bits 8, 7, 6 e 5. Comparar (c) com a imagem completa, Fig. 3.14(a)

19 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering PROCESSAMENTO DE HISTOGRAMA O histograma de uma imagem digital com níveis de intensidade no intervalo [0, L-1] é uma função discreta h(r k ) = n k, onde r k é o k-ésimo valor de intensidade e n k é o número de pixels na imagem com intensidade r k. Histograma normalizado: dividir cada um dos componentes pelo número total de pixels da imagem, denotado por MN, tal que p(r k ) = n k /MN, para k = 0, 1, 2,..., L-1.

20 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Quatro tipos básicos de imagem: escuro, claro, baixo contraste, alto contraste, e seus histogramas correspondentes. escuro claro baixo contraste alto contraste

21 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering EQUALIZAÇÃO DE HISTOGRAMA A equalização de histograma ou linearização de histograma consiste numa transformação T(r k ) em que a imagem original resulte numa imagem onde os níveis de intensidade são uniformemente distribuídos.

22 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a) Função monotônica crescente, mostrando como múltiplos valores podem mapear a um único valor. (b) Função estritamente monotônica crescente (mapeamento um-a-um, em ambas as direções.

23 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Os níveis de intensidade de uma imagem podem ser vistos como variáveis aleatórias no intervalo [0, L-1]. Um descritor fundamental de uma variável aleatória é a função densidade de probabilidade (PDF, Probability Distribution Function). Sejam p r (r) e p s (s) a função PDF de r e s, respectivamente, onde s = T(r). Da teoria de probabilidade básica, se pr(r) e T(r) são conhecidos, e T(r) é contínua e diferenciável, no intervalo de interesse, então a função PDF da variável transformada s pode ser obtida pela equação A função de transformação de particular importância em processamento de imagens tem a forma (Eq ) (Eq )

24 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Sabe-se da regra de Leibniz de Cálculo Básico que a derivada de uma integral definida com respeito ao seu limite superior é o integrando avaliado no limite : Substituindo esse resultado na equação 3.3-3, tem-se:

25 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Um PDF arbitrário. (b)Resultado da aplicação da transformação (eq.3.3-4) para todos os níveis de intensidade, r. As intensidades resultantes, s, tem um PDF uniforme, independente/ da forma da PDF de rs. Eq :

26 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Para valores discretos lidamos com probabilidades e somatórios ao invés de funções de densidade de probabilidade e integrais. A probabilidade de ocorrência de nível de intensidade r k numa imagem digital é dada por onde MN é o número total de pixels, n k é o número de pixels de intensidade r k e L é o número de possíveis níveis de intensidade. A forma discreta da transformação da equação é Eq

27 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Distribuição de intensidade e valores de histograma para uma imagem digital 64x64 de 3 bits.

28 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Ilustração da equalização de histograma de imagem de 3 bits. (a)Histograma original (b)Função de transformação (c)Histograma equalizado.

29 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Coluna a esquerda: imagens da Fig Coluna central: imagens com equalização de histograma Coluna direita: histogramas das imagens da coluna central.

30 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Funções de transformação para equalização de histograma. Transformações (1) a (4) foram obtidas dos histogramas das imagens do topo à base na coluna a direita da Fig usando eq Eq

31 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Especificação de Histograma (matching). A equalização de histograma visto anteriormente determina a função de transformação que busca produzir uma imagem de saída que tenha um histograma uniforme. Existem aplicações em que é útil especificar a forma do histograma para a imagem processada. O método usado para gerar uma imagem processada que tenha um histograma especificado é chamado de matching de histograma ou especificação de histograma.

32 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Voltando a idéia de intensidades contínuas r e z, e sejam p r (r) e p z (z), as PDFs respectivas. Aqui r denota níveis de intensidade da imagem de entrada e z denota níveis de intensidade da imagem processada de saída. Podemos estimar p r (r) de uma dada imagem de entrada, enquanto que p z (z) é a função PDF especificada. Seja s uma variável aleatória com a propriedade Definimos agora uma variável aleatória z com a propriedade Segue então que G(z)=T(r) e, portanto, z deve satisfazer eq eq eq

33 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering As equações anteriores mostram que uma imagem cujos níveis de intensidade tem uma PDF especificada pode ser obtida de uma dada imagem usando o seguinte procedimento: 1.Obter p r (r) da imagem de entrada e usar a equação para obter os valores de s. 2.Usar a PDF especificada em equação para obter a função de transformação G(z). 3.Obter a tranformação inversa z= G -1 (s); como z é obtido de s, este processo é um mapeamento de s a z, sendo o último, os valores desejados. 4.Obter a imagem de saída primeiro equalizando a imagem de entrada usando a eq ; os valores de pixels são os valores s. Para cada pixel com valor s realizar o mapeamento inverso z = G -1 (s) para obter a imagem de saída.

34 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering A formulação discreta da equação é dada pela equação Similarmente, dado um valor específico de s k, a formulação discreta da eq é dada por para um valor de q, tal que Obtem-se o valor desejado z q pela transformação inversa: Eq Eq

35 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering RESUMO DO PROCEDIMENTO: 1.Computar o histograma p r (r) da imagem de entrada e usar o resultado para realizar a transformação da eq Arredondar os valores resultantes s k, para inteiros no intervalo [0, L-1]. 2.Computar todos os valores da função de transformação G usando a eq para q = 0, 1, 2,..., L-1, onde p z (z i ) são os valores do histograma especificado. Arredondar os valores de G para inteiros no intervalo [0, L-1]. Guardar os valores de G numa tabela. 3.Para cada valor de s k, k = 0, 1, 2,..., L-1, usar os valores guardados de G do passo 2 para encontrar o valor correspondente de z q tal que G(z q ) seja próximo de s k e guardar esse mapeamento de s para z. Quando mais que um valor de z q satisfaz o dado s k, escolher o menor valor por convenção. 4.Formar a imagem do histograma especificado, primeiro equalizando o histograma da imagem de entrada e então mapeando cada valor do pixel equalizado, s k, para o correspondente valor z q na imagem de histograma especificado usando o mapeamento do passo 3.

36 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Histograma de imagem de 3 bits. (b) Histograma especificado (c) Função de transformação obtida do hist. especificado. (d) Resultado da realização da especificação. Comparar (b) e (d)

37 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Histogramas reais e especificados. Os valores da terceira coluna são das computações realizadas no exemplo 3.8 (anterior).

38 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Todos os possíveis valores da função de transformação G escalados, arredondados, e ordenados em relação a z.

39 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Mapeamento de todos os valores de s k em valores correspondentes de z q.

40 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Imagem da Lua de Marte Phobos. (b) Histograma.

41 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Função de transformação para equalização de histograma (b) Imagem de histograma equalizado (notar o excesso de clareamento ) (c) Histograma de (b)

42 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Devido ao problema do excesso de clareamento da imagem resultante da equalização de histograma, será mostrada uma transformação a partir da especificação manual de uma função que preserva a forma geral do histograma original, mas tem uma transição de níveis suavizada na região escura de intensidade (Fig a). A função de transformação G(z) obtida do histograma usando a eq está rotulado como 1 na Fig b. A transformação inversa G -1 (s) está rotulada como 2. A imagem da Fig c é resultante da aplicação da transformação 2 aos pixels da imagem resultante da equalização de histograma da Fig b. A Fig. 3.25d mostra o histograma da imagem melhorada da Fig. 3.25c.

43 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Histograma especificado (b)Transformações: curva (1) = G(z) (2)= G -1 (s) (c)Imagem melhorada usando mappings da curva (2) (d) Histograma de (c)

44 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering PROCESSAMENTO DE HISTOGRAMA LOCAL Os métodos de histograma vistos anteriormente são globais, ou seja, os pixels são modificados por uma função de transformação baseada na distribuição de intensidade da imagem inteira. Existem casos em que seja necessário melhorar detalhes sobre uma pequena área de uma imagem. O procedimento é definir uma vizinhança e mover o centro pixel a pixel. A cada posição, o histograma dos pontos da vizinhança é computado e uma função de transformação de equalização ou de especificação é obtida. Essa função é então usada para mapear a intensidade do pixel central da vizinhança. O centro da região de vizinhança é então movido a uma das posições adjacentes e o procedimento é repetido.

45 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Imagem original. (b)resultado da equalização de histograma global (c)Resultado da equalização de histograma local em (a), usando uma vizinhança de tamanho 3x3.

46 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering USANDO ESTATÍSTICA DE HISTOGRAMA PARA MELHORAMENTO DE IMAGEM A estatística obtida de um histograma de imagem pode ser usada para melhoramento de imagem. Seja r uma variável aleatória discreta representando os valores de intensidade no intervalo [0, L-1], e seja p(r i ) o componente do histograma normalizado correspondente ao valor r i. O n-ésimo momento de r sobre a sua média é definido como onde m é o valor médio de r, ou intensidade média dos pixels na imagem.

47 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering O segundo momento é particularmente importante: Essa equação é a variância, normalmente denotada por, e denota a medida de contraste numa imagem. Quando somente a média e a variância é estimada, pode-se obter esses valores diretamente: e

48 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Exemplo: Considerar uma imagem 5x5: Os pixels são representados por 2 bits; portanto, L= 4 e os níveis de intensidade ficam no intervalo [0,3]. O número total de pixels é 25, e o histograma tem os componentes Portanto, pode-se computar o valor médio das intensidades da forma: Esse resultado é o mesmo que calcular o valor médio usando a equação:

49 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering USO DO VALOR MÉDIO LOCAL E VARIÂNCIA LOCAL Sejam (x,y) as coordenadas de qualquer pixel e S xy uma vizinhança de um determinado tamanho, centrada em (x,y). O valor médio dos pixels nessa vizinhança é dado pel expressão A variância dos pixels na vizinhança é dada por

50 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering O problema da Fig. 3.27a, é que o filamento de tungstênio ao redor de um suporte, localizado no centro da imagem é visto nitidamente. Porém, existe um outro filamento no lado direito, que é imperceptível. O problema é de melhorar as áreas escuras sem alterar as áreas claras que não necessitam de melhoramento. A medida de se uma área é relativamente clara ou escura a um ponto (x,y) é comparar o valor médio de intensidade local, m Sxy, ao valor médio de intensidade global, denotado aqui m G. Assim, temos o primeiro elemento de melhoramento: consideramos o pixel no ponto (x,y) como um candidato para o processamento se onde k 0 é uma constante positiva com valor menor que 1.0.

51 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Como estamos interessados em melhorar áreas que tem baixo contraste, necessitamos também a medida para determinar se o contraste de uma área deve ser melhorado. Consideramos que o pixel em (x,y) deve ser melhorado se onde G é o desvio padrão global e k 2 é uma constante positiva. O valor dessa constante será maior que 1.0 se estamos interessados em melhorar áreas claras e menor que 1.0 para melhorar áreas escuras. Finalmente, devemos restringir os menores valores de contraste que desejamos aceitar, caso contrário o procedimento tentaria melhorar áreas constantes, com desvio padrão zero. Assim, definimos um limite inferior para o desvio padrão local com k 1 < k 2. Um pixel em (x,y) que enquadra em todas as condições acima é processado multiplicando o seu valor de intensidade por uma constante E, para aumentar (ou diminuir) o seu valor.

52 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering Resumindo, se f(x,y) representa o valor de uma imagem numa coordenada (x,y) e se g(x,y) representa o correspondente valor melhorado, então Para o caso da Fig os seguintes valores foram usados: A área da região foi de 3x3.

53 Digital Image Processing, 3rd ed. © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations & Spatial Filtering Chapter 3 Intensity Transformations & Spatial Filtering (a)Imagem SEM de filamento de tungstênio ampliado 130x. (b)Resultado da equalização de histograma global. (c)Imagem melhorada usando estatística de histograma local.


Carregar ppt "Digital Image Processing, 3rd ed. www.ImageProcessingPlace.com © 1992–2008 R. C. Gonzalez & R. E. Woods Gonzalez & Woods Chapter 3 Intensity Transformations."

Apresentações semelhantes


Anúncios Google