A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Correlações Eletrônicas em Nano-superredes Apoio: Esta apresentação pode ser obtida do site

Apresentações semelhantes


Apresentação em tema: "Correlações Eletrônicas em Nano-superredes Apoio: Esta apresentação pode ser obtida do site"— Transcrição da apresentação:

1 Correlações Eletrônicas em Nano-superredes Apoio: Esta apresentação pode ser obtida do site seguindo o link em Seminários, Mini-cursos, etc. Colaboradores: Thereza Paiva (UFRJ) Mohammed El-Massalami (UFRJ) André L Malvezzi (UNESP/Bauru) Eduardo Miranda (UNICAMP) Jereson Silva-Valencia (UNICAMP) Raimundo R dos Santos

2 Esquema do seminário Introdução Nano-superredes de Hubbard Metodologia Nano-superredes com interações repulsivas: Magnetismo, MIT, e distribuição de carga Nano-superredes com interações atrativas: Supercondutividade Conclusões

3 A aproximação de elétrons indepen- dentes com o modelo de bandas expli- ca boa parte dos comportamentos observados: metais isolantes semicondutores Introdução

4 Mas, cuidado com bandas estreitas (especialmente d e f ): maior tendência à localização elétron passa mais tempo perto do núcleo tem maior chance de encontrar outro elétron no mesmo núcleo interação repulsiva (Coulombiana) entre elétrons não pode mais ser desprezada os e se movimentam solidariamente, para minimizar a energia fortemente correlacionados

5

6 Cálculos de bandas: caso não-dopado (x = 0): Metal ????Incluindo correlação, o comportamento isolante (correto!) é obtido

7 Nanosuperredes: Heteroestruturas cujas unidades de repetição têm seções retas com dimensões nanoscópicas

8 Nanosuperredes: Exemplos já realizados experimentalmente: Nanofios de multicamadas magnéticas (GMR) Super-redes de nanofios semicondutores (fotônica) [Piraux et al., (1994)] [Gudiksen et al., 2002] O Au A GaAs B GaP

9 Nanosuperredes: Exemplos possíveis (?): Super-redes de nanotubos de Carbono [Yao et al., 1999] dobras com pentágonos e heptágonos

10 FM AFM O acoplamento de exchange entre as camadas magnéticas oscila com o tamanho do espaçador Super-redes usuais: Multicamadas metálicas magnéticas – p.ex., Fe/Cr/Fe, Fe/Mn/Fe,...

11 + GMR [Baibich et al., 1988]

12 Teoria de poço quântico [Edwards et al. (1991)] explica qualitativa- mente aspectos da oscilação do exchange: considera a magnetização de cada camada períodos de oscilação determinados pelos pontos extremos da superfície de Fermi do material espaçador períodos longos e curtos (teoria e exp); p.ex., Fe/Cr/Fe, 10 a 12 ML + 2 ML Mas, como entender o papel de fortes correlações eletrônicas, principalmente no material magnético? necessidade de teoria microscópica como caracterizar oscilação?

13 Multicamadas supercondutor/ferromagneto Fe/Nb/Fe Nb/Gd T c oscila quando d FM cresce mecanismo ainda não compreendido T c decresce rapidamente para d Gd < 7 Å, quando cessa FM do Gd não explicado por teoria (semiclás- sica): necessidade de teoria micros- cópica + baixa dimensionalidade [Jiang et al., (1995)] [Mühge et al., (1996)]

14 Mono e Bi-planos: os carbetos de Boro RT 2 B 2 CRTBC R = Sc, Y; Terras raras T = Ni, Co, Pd, Pt

15 Coexistência entre ordens (antiferro) magnética (4f) e supercondutora em alguns compostos de uma camada... [Canfield et al., (1998)]

16 RT 2 B 2 C 1 camada RC T=Ni R=Sc, Y, Ce, Dy, Ho, Er, Tm, Lu, U, Th SUC coexistência SUC e MAG (exceto Lu) R= Yb Heavy fermion RTBC 2 camadas RC T=Ni sem SUC, sem HF T=Co 1 camada R=Lu, Tm, Er, Ho Dy, Gd, Ce sem SUC R=La 1 camada T=Ni sem SUC; sem MAG T=Pd, Pt SUC...mas não se consegue uma sistematização dos dados: Necessário uma teoria simples – int e-fonon + BCS OK! – que incorpore efeitos de camadas

17 Características comuns dos diversos sistemas físicos ilustrados: elétrons fortemente correlacionados modelos devem incorporar estrutura de camadas de modo fundamental pelo menos uma dimensão reduzida (micro- ou nanoscópica) tratamento por teorias de campo médio desejável, mas deve-se ter cautela com previsões

18 Favorece o salto dos férmions entre sítios (termo de banda) Repulsão Coulombiana: a energia total aumenta se 2 e s ocuparem o mesmo orbital termo de correlação Modelo emblemático para spins itinerantes em rede homogênea: Modelo de Hubbard repulsivo Competição entre graus de liberdade de carga e de spin Hubbard Heisenberg AFM para um e por sítio (banda semi-cheia) quando U t para uma apresentação.ppt de revisão sobre aspectos de sistemas fermiônicos fortemente correlacionados, veja e siga os links em Seminários, Mini-cursos, etc.

19 Previsões para o modelo homogêneo em 2 dimensões (T = 0) [Hirsch (1985)] Simulações de Monte Carlo Teoria de Campo Médio (teoria de 1 partícula) Fortes fluts. AFMs

20 N.B.: Em 1-D não há ordem magnética de longo alcance; a SDW é um estado quase- ordenado Em 1 dimensão (T = 0) : Ondas de densidade de carga e ondas de densidade de spin Banda semi-cheia ( =1): só SDW; isolante de Mott Dopado: SDW e CDW [Brown and Grüner (1994); Grüner (1988,1994)]

21 ômiconão-ômico Se período da CDW incomen- surável com a rede [i.e., r a; r racional e a parâmetro de rede] transporte de corrente é não-ômico Explicação: analogia mecânica [Brown and Grüner (1994); Grüner (1988,1994)]

22 Características: Emparelhamento no espaço real, ao contrário de BCS. Equivale a BCS para |U| << t Apresenta gap (para excitações) de spin SUCs de alta T Mais amigável para cálculos numéricos pode ser usado como modelo efetivo para entender diversas propriedades de supercondutores (p.ex., inomogeneidades: desordem, super-redes) [Micnas et al. (90)] O Modelo de Hubbard Atrativo

23 QMC: T c como função de, para |U| fixo......e, varrendo-se |U|, obtém-se o diagrama completo (esquemático) [Scalettar et al. (1989)] [Moreo and Scalapino (1991)] ?

24 Super-redes de Hubbard Fe, Ni, Co Cu, Ag, Cr U 0 U = 0 Em uma dimensão: Caso Repulsivo [Paiva and dS (1996)] LULU L0L0

25 Caso Atrativo Por enquanto: papel das camadas nos carbetos de Boro desconsideramos momentos localizados (4f) U<0 U=0 U<0 U=0 U<0 U=0 RT 2 B 2 C RTBC U<0 U=0 U=0 sítios atrativos T 2 B 2 RC sem elétrons f

26 Métodos de Cálculo Diagonalização de Lanczos: H 1 H 1 2 [Malvezzi (2002)]

27 A matriz de H é gerada sob a forma tri-diagonal mais econômica em termos de memória incorporação de simetrias rápida convergência para obter estado fundamental

28 Density Matrix Renormalization Group: [Malvezzi (2002)] blocos superbloco Idéia básica: construção da rede bottom up, preservando o tamanho do espaço de Hilbert diagonaliza a Hamiltoniana do superbloco via Lanczos usa a matriz densidade para selecionar contribuições mais importantes ao estado fundamental (truncagem)

29 kFkF -k F k q k F kF kF g2g2 kFkF kF kF q g4g4 Linearizando a dispersão perto de k F (processos de baixas energias) excitações sem gap Espalhamento para a frente, apenas (i.e. momento transferido q << 2k F ): Formulação como Líquido de Luttinger: [Voit (1994); Miranda (2002)]

30 A conjectura do Líquido de Luttinger: Parametrização da teoria: (u, K ) e (u, K ) dependem das constantes de acoplamento g 2 e g 4 o LL descreve, de modo universal, toda a Física de baixas energias (excitações sem gap) para os metais 1D Função de correlaçao de carga K F K F x x)x)k A xx xk A x K x nn 4 2 2/ cos( ln )2cos( )( )()0( K é um expoente não-universal (depende da interação) 2k F n, onde n é a densidade eletrônica 2k F domina se 1 K 4K K 1/3

31 Conexão com LL [Schulz(90)]: tamanho do sistema Calculado pela solução via Bethe ansatz K (n,U) K 1/2 modulação de carga 2k F predomina a 4k F c.f. previsões antigas via Grupo de Renormalização [Sólyom(79)]

32 Outras grandezas mensuráveis – Calor específico: C = T onde 2 = 0 v F [u -1 + u -1 ], com 0 = 2 k B 2 / 3 v F – Susceptibilidade magnética : = 2 K / u – Compressibilidade: = 2 K / u – Peso de Drude (condutividade DC): D = 2 u K

33 Nanosuperredes com interações repulsivas: Magnetismo, MIT, e distribuição de carga Perfil de momento local, S i 2, com S i = n i - n i mede itinerância [Malvezzi, Paiva e dS (2002)] Máximos nos sítios repulsivos Máximos nos sítios livres Estrutura de super-rede irrelevante n Mobiilidade dos máximos de S i 2 DMRG

34 Momento local, S i 2, como função da ocupação n Caso homogêneo: máximo na ocupação isolante, n=1 Na SR, a posição do máximo depende do aspect ratio, L U /L 0 possível isolante de Mott em n I = [2+ ]/[1+ ] [Paiva e dS (1998)] Lanczos

35 Verificação do isolante de Mott: gap de carga [Paiva e dS (1998)] c = E (N c, N e + 1) + E (N c, N e 1) 2 E (N c, N e ) onde E (N c, N e ) é a energia do estado fundamental para N c células com N e elétrons De fato, se n = n I tem-se 0 quando N c isolante de Mott Lanczos

36 Diagrama de fases SRs de Líquidos de Luttinger U = 0 (g = 1) U 0 (g 1) longas [Silva-Valencia, Miranda e dS (2001,2002)] Isolante sem gap metal isolante de Mott (gap) Isolante sem gap LL

37 Compressibilidade: = 0 incompressível (Mott) 0 compressível (metal), mas uma das sub-redes é isolante sistema como um todo o é [Silva-Valencia, Miranda e dS (2001,2002)] LL A SR permite a constru- ção de um material iso- lante sem gap

38 Em n I uma expansão em acoplamento forte leva a um modelo de Heisenberg numa super-rede, com acoplamento entre spins em diferentes camadas sendo mediado pelos elétrons na camada livre Ordenamento magnético em n I = [2+ ]/[1+ ] : [Paiva e dS (2000)] SDW Lanczos SDW Frustração Lanczos

39 Dopando além de n I : exemplo com L U = 3, L 0 = 1 4 spins na camada repulsiva: S = 0 frustração 5 spins na camada repulsiva: S 0 SDW recuperada Frustração quando S rep =0; induzida por dopagem [Paiva e dS (2000)] Lanczos

40 Análise do gap de spin s = E (N c, N e, S z = 1) E (N c, N e, S z = 0) SDW s = 0 Lanczos Frustração s 0 gaps extrapolados para N c Frustração e SDW também se manifestam no gap de spin [Paiva e dS (2000)] Lanczos

41 Que arranjo magnético domina a SDW? Analisemos o fator de estrutura magnético, No caso homogêneo, S (q) tem pico em q max = 2k F = n Dois picos períodos longo e curto em alguns casos: picos em q max, e em q* = cresce com U e com N s robusto [Malvezzi, Paiva e dS (2002)] DMRG

42 Evolução da posição dos picos com a densidade: [Malvezzi, Paiva e dS (2002)] SDWs com todos os q geradas num intervalo 2n 0, mais estreito que no caso homogêneo DMRG q max / n NB: q max = 0 não é FM, mas frustração: S tot (repulsiva) = 0

43 Regiões num espaço de parâmetros 3D: As regiões n n U só são importantes para camadas finas = 1 [Malvezzi, Paiva e dS (2002)]

44 n = 11/6 Evolução da posição do 2o. pico com a espessura do espaçador: L 0 q max fornece medida do acoplamento de exchange entre as camadas oscila com L 0, para uma densidade eletrônica fixa: período L 0 = k F (c.f. previsão de Hartree-Fock para multicamadas magnéticas) [Paiva e dS (2000); Malvezzi, Paiva e dS (2002)] Lanczos

45 modo de carga 4k F de fato predomina sobre o 2k F, ao menos para valores de U suficientemente grandes. Distribuição de Carga: CDWs Caso homogêneo: velha pendência LL vs. Hubbard, mas... Acordo com descrição de LL: amplitude A 1 (n,U) do modo 2k F 0 para U U (n) Esquematicamente: n 1 0 U 2kF2kF 4kF4kF U (n) [Paiva e dS (2000b)]

46 Super-redes – examinemos o fator de estrutura de carga: Distribuição de carga na camada repulsiva determina correlações: cúspides em q*= 4k F *, com 2k F * = n eff onde n eff = n (L U + L 0 ) 2 L 0 Não é efeito de tamanho: cúspides mais nítidas à medida em que N s cresce [Paiva e dS (2002)] Lanczos

47 Evolução da posição da cúspide com a espessura do espaçador: q* fornece medida do acoplamento de carga entre as camadas oscila com L 0, para uma densidade eletrônica fixa período L 0 = 2k F [Paiva e dS (2002)] Lanczos

48 Condutividade Condutividade confirma a natureza isolante do sistema, quer o gap de carga seja finito (Mott) ou nulo (isolante parcial), [Silva-Valencia, Miranda e dS (2001,2002)] LL

49 Nanosuperredes com interações atrativas: Supercondutividade gap de carga excitações de uma partícula C = E (N c,N e +1)+E (N c,N e - 1) - 2E (N c,N e ) C D C I 0 = 0 S 0 0 M = 0 0 peso de Drude ( )=D C ( )+g( ) fluxo magnético atravessando anel

50 [T Paiva, M El-Massalami, & RRdS, em andamento (2002)] n = 5/3 c = 0 D c = 0 De fato, a introdução de uma camada livre adicional diminui a região SUC

51 RPt 2 B 2 C RCo 2 B 2 C RNi 2 B 2 C | U | Raio atômico Co Ni Rh Pd Ir Pt Sistematização Fixando os dados sobre a série do Ni, determina-se a fronteira SUC-M Adiciona-se as outras séries de metais de transição, respeitando o raio atômico Pode-se prever, a partir daí, se determinado composto será, ou não, SUC

52 Conclusões Geral: caráter 1D capta efeitos de interferências quânticas na direção da SR de dimensões maiores. Dois tipos de isolantes: Mott, para n = n I ( ) Compressível (gapless) para n n I ( ) Super-redes magnéticas podem apresentar frustração, dependendo da combinação entre dopagem e aspect ratio Caracterização do acoplamento de exchange via S(q): densidades efetivas n cell, n eff q max oscilação com L 0 superfície de Fermi: per = /k F oscilação com n : período mais curto que no caso homogêneo

53 Distribuição de Carga: modo dominante q* = 4k F *, com 2k F * = n eff acoplamento de carga entre células oscila com L 0 : período = /2k F SRs Supercondutoras critério (gap de carga e peso de Drude) OK modelo explica qualitativamente desfavorecimento de SUC quando L 0 aumenta de 1 para 2 permite sistematização de dados

54 Próximos passos Nanosuperredes: Estudo mais detalhado das CDWs (DMRG) Escadas e tubos Campo magnético Peso de Drude GMR Tunelamento; biestabilidade na corrente (LLSL) Inclusão de momentos localizados (elétrons-f ) e interação com elétrons de condução: Kondo [no caso desordenado: implicações para semicondutores magnéticos diluídos (DMS)] 2D e 3D [QMC]: Magnetismo MIT, Transporte Efeitos de estrutura de bandas estabilização de estado FM Supercondutividade (com momentos localizados)

55 Referências M N Baibich et al., Phys Rev Lett 61, 2472 (1988) S Brown and G Grüner, Sci Am 270 (4), 28 (1994) P C Canfield et al., Phys Today 51 (10), 40 (1998) D M Edwards et al., Phys Rev Lett 67, 493 (1991) P Grünberg et al., J Appl Phys 69, 4789 (1991) G Grüner, Rev.Mod.Phys. 60, 1129 (1988) G Grüner, Rev.Mod.Phys. 66, 1 (1994) M S Gudiksen et al., Nature 415, 617 (2002) J E Hirsch, Phys Rev B 31, 4403 (1985) J Jiang et al., Phys Rev Lett 74, 314 (1995) A L Malvezzi, Escola Bras Mec Est - Braz J Phys (2002) ? A L Malvezzi, T Paiva and R R dos Santos, Phys Rev B 66, (2002). L V Mercaldo et al., Phys Rev B 53, (1996) R Micnas et al., Rev Mod Phys 62, 113 (1990) E Miranda, Escola Bras Mec Est - Braz J Phys (2002) ? A Moreo and D J Scalapino, Phys Rev Lett 66, 946 (1991)

56 Th. Mühge et al., Phys Rev Lett 77, 1857 (1996) T Paiva and R R dos Santos, Phys.Rev.Lett. 76, 1126 (1996) T Paiva and R R dos Santos, Phys.Rev.B 58, 9607 (1998) T Paiva and R R dos Santos, Phys.Rev.B 61, (2000) [b] T Paiva and R R dos Santos, Phys.Rev.B 62, 7004 (2000) T Paiva and R R dos Santos, Phys.Rev.B 65, (2002) S T Ruggiero et al., Phys Rev B 26, 4894 (1982) R T Scalettar et al., Phys Rev Lett 62, 1407 (1989) H J Schulz, Phys.Rev.Lett. 64, 2831 (1990) T Siegrist et al., Nature 367, 254 (1994) J Silva-Valencia, E Miranda, and R R dos Santos, J Phys Condens Matt 13, L619 (2001) J Silva-Valencia, E Miranda, and R R dos Santos, Phys Rev B 65, (2002) J Sólyom, Adv.Phys. 28, 209 (1979) J Voit, Rep.Prog.Phys. 57, 977 (1994) Z Yao et al., Nature 402, 273 (1999)


Carregar ppt "Correlações Eletrônicas em Nano-superredes Apoio: Esta apresentação pode ser obtida do site"

Apresentações semelhantes


Anúncios Google