A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Correlações Eletrônicas em Nano-superredes

Apresentações semelhantes


Apresentação em tema: "Correlações Eletrônicas em Nano-superredes"— Transcrição da apresentação:

1 Correlações Eletrônicas em Nano-superredes
Raimundo R dos Santos Colaboradores: Thereza Paiva (UFRJ) Mohammed El-Massalami (UFRJ) André L Malvezzi (UNESP/Bauru) Eduardo Miranda (UNICAMP) Jereson Silva-Valencia (UNICAMP) Apoio: Esta apresentação pode ser obtida do site seguindo o link em “Seminários, Mini-cursos, etc.”

2 Esquema do seminário Introdução Nano-superredes de Hubbard Metodologia
Nano-superredes com interações repulsivas: Magnetismo, MIT, e distribuição de carga Nano-superredes com interações atrativas: Supercondutividade Conclusões

3 Introdução A aproximação de elétrons indepen-dentes com o modelo de bandas expli-ca boa parte dos comportamentos observados: metais isolantes semicondutores

4 tem maior chance de encontrar outro elétron no mesmo núcleo
Mas, cuidado com bandas estreitas (especialmente d e f ): maior tendência à localização elétron passa mais tempo perto do núcleo tem maior chance de encontrar outro elétron no mesmo núcleo interação repulsiva (Coulombiana) entre elétrons não pode mais ser desprezada os e se movimentam solidariamente, para minimizar a energia fortemente correlacionados

5

6 Cálculos de bandas: caso não-dopado (x = 0):
Metal ???? Incluindo correlação, o comportamento isolante (correto!) é obtido

7 Nanosuperredes: Heteroestruturas cujas unidades de repetição têm seções retas com dimensões nanoscópicas

8 Exemplos já realizados experimentalmente:
Nanosuperredes: Exemplos já realizados experimentalmente: Nanofios de multicamadas magnéticas (GMR) Super-redes de nanofios semicondutores (fotônica) [Piraux et al., (1994)] [Gudiksen et al., 2002] O  Au A  GaAs B  GaP

9 Exemplos possíveis (?): Super-redes de nanotubos de Carbono
Nanosuperredes: Exemplos possíveis (?): Super-redes de nanotubos de Carbono dobras com pentágonos e heptágonos [Yao et al., 1999]

10 Super-redes usuais:  Multicamadas metálicas magnéticas – p.ex., Fe/Cr/Fe, Fe/Mn/Fe,... FM AFM O acoplamento de exchange entre as camadas magnéticas oscila com o tamanho do espaçador

11 + GMR [Baibich et al., 1988]

12 Teoria de poço quântico [Edwards et al
Teoria de poço quântico [Edwards et al. (1991)] explica qualitativa-mente aspectos da oscilação do exchange: considera a magnetização de cada camada períodos de oscilação determinados pelos pontos extremos da superfície de Fermi do material espaçador períodos longos e curtos (teoria e exp); p.ex., Fe/Cr/Fe, 10 a 12 ML + 2 ML Mas, como entender o papel de fortes correlações eletrônicas, principalmente no material magnético?  necessidade de teoria microscópica  como caracterizar oscilação?

13  Multicamadas supercondutor/ferromagneto
Fe/Nb/Fe [Mühge et al., (1996)] Nb/Gd Tc oscila quando dFM cresce mecanismo ainda não compreendido Tc decresce rapidamente para dGd < 7 Å, quando cessa FM do Gd não explicado por teoria (semiclás-sica): necessidade de teoria micros-cópica + baixa dimensionalidade [Jiang et al., (1995)]

14 Mono e Bi-planos: os carbetos de Boro RT2B2C RTBC R = Sc, Y; Terras raras T = Ni, Co, Pd, Pt

15 Coexistência entre ordens (antiferro) magnética (4f) e supercondutora em alguns compostos de uma camada... [Canfield et al., (1998)]

16 RTBC  2 camadas RC T=Ni  sem SUC, sem HF T=Co  1 camada
...mas não se consegue uma sistematização dos dados: RT2B2C  1 camada RC T=Ni R=Sc, Y, Ce, Dy, Ho, Er, Tm, Lu, U, Th  SUC coexistência SUC e MAG (exceto Lu) R= Yb  Heavy fermion RTBC  2 camadas RC T=Ni  sem SUC, sem HF T=Co  1 camada R=Lu, Tm, Er, Ho Dy, Gd, Ce  sem SUC R=La  1 camada T=Ni  sem SUC; sem MAG T=Pd, Pt  SUC Necessário uma teoria simples – int e-fonon + BCS OK! – que incorpore efeitos de camadas

17 Características comuns dos diversos sistemas físicos ilustrados:
elétrons fortemente correlacionados modelos devem incorporar estrutura de camadas de modo fundamental pelo menos uma dimensão reduzida (micro- ou nanoscópica) tratamento por teorias de campo médio desejável, mas deve-se ter cautela com previsões

18 Favorece o salto dos férmions entre sítios (termo de banda)
Modelo emblemático para spins itinerantes em rede homogênea: Modelo de Hubbard repulsivo Repulsão Coulombiana: a energia total aumenta se 2 e’s ocuparem o mesmo orbital  termo de correlação† Favorece o salto dos férmions entre sítios (termo de banda) Competição entre graus de liberdade de carga e de spin Hubbard  Heisenberg AFM para um e por sítio (banda semi-cheia) quando U  t † para uma apresentação .ppt de revisão sobre aspectos de sistemas fermiônicos fortemente correlacionados, veja e siga os links em “Seminários, Mini-cursos, etc.”

19 Previsões para o modelo homogêneo em 2 dimensões (T = 0)
Teoria de Campo Médio (teoria de 1 partícula) Fortes fluts. AFM’s Simulações de Monte Carlo [Hirsch (1985)]

20 Banda semi-cheia (=1): só SDW; isolante de Mott Dopado: SDW e CDW
Em 1 dimensão (T = 0) : Ondas de densidade de carga e ondas de densidade de spin [Brown and Grüner (1994); Grüner (1988,1994)] Banda semi-cheia (=1): só SDW; isolante de Mott Dopado: SDW e CDW N.B.: Em 1-D não há ordem magnética de longo alcance; a SDW é um estado quase-ordenado

21 Se período da CDW incomen-surável com a rede
[i.e.,   r a; r racional e a parâmetro de rede]  transporte de corrente é não-ômico ômico não-ômico Explicação: analogia mecânica [Brown and Grüner (1994); Grüner (1988,1994)]

22 O Modelo de Hubbard Atrativo
Características: Emparelhamento no espaço real, ao contrário de BCS. Equivale a BCS para |U| << t Apresenta gap (para excitações) de spin SUC’s de alta T Mais amigável para cálculos numéricos pode ser usado como modelo efetivo para entender diversas propriedades de supercondutores (p.ex., inomogeneidades: desordem, super-redes) [Micnas et al. (90)]

23 ? QMC: Tc como função de <n>, para |U| fixo...
[Moreo and Scalapino (1991)] ...e, varrendo-se |U|, obtém-se o diagrama completo (esquemático) [Scalettar et al. (1989)]

24 Super-redes de Hubbard
Caso Repulsivo  Fe, Ni, Co  Cu, Ag, Cr Em uma dimensão:  U  0  U = 0 LU L0 [Paiva and dS (1996)]

25 Caso Atrativo Por enquanto: papel das camadas nos carbetos de Boro
desconsideramos momentos localizados (4f) U<0 U=0 U<0 U=0 U<0 U=0             RT2B2C             RTBC U<0 U=0 U=0 U<0 U= U=0   T2B RC  sem elétrons f sítios atrativos

26 Métodos de Cálculo Diagonalização de Lanczos: H  1 H 1 
2 [Malvezzi (2002)]

27 A matriz de H é gerada sob a forma tri-diagonal
mais econômica em termos de memória incorporação de simetrias rápida convergência para obter estado fundamental

28 Density Matrix Renormalization Group:
Idéia básica: construção da rede “bottom up”, preservando o tamanho do espaço de Hilbert superbloco blocos diagonaliza a Hamiltoniana do superbloco via Lanczos usa a matriz densidade para selecionar contribuições mais importantes ao estado fundamental (truncagem) [Malvezzi (2002)]

29 g2 g4  excitações sem gap Formulação como Líquido de Luttinger: kF
Linearizando a dispersão perto de kF (processos de baixas energias) Espalhamento para a frente, apenas (i.e. momento transferido q << 2kF): q  kF kF g2 kF q g4  excitações sem gap [Voit (1994); Miranda (2002)]

30 p x x) k A n cos( ln ) ( + = ñ á A conjectura do Líquido de Luttinger:
Parametrização da teoria: (u, K) e (u, K) dependem das constantes de acoplamento g2 e g4 o LL descreve, de modo universal, toda a Física de baixas energias (excitações sem gap) para os metais 1D Função de correlaçao de carga r p K F x x) k A n 4 2 / 3 1 cos( ln ) ( + = ñ á  2kF   n, onde n é a densidade eletrônica  K é um expoente não-universal (depende da interação) 2kF domina se 1K 4K  K  1/3

31  K (n,U) Conexão com LL [Schulz(90)]:
tamanho do sistema Calculado pela solução via Bethe ansatz  K (n,U) K  1/2  modulação de carga 2kF predomina a 4kF c.f. previsões antigas via Grupo de Renormalização [Sólyom(‘79)]

32 Outras grandezas mensuráveis
Calor específico: C =  T onde 2 = 0 vF [u-1 + u -1], com 0 = 2  kB2 /3vF Susceptibilidade magnética:  = 2 K /  u Compressibilidade:  = 2 K /  u Peso de Drude (condutividade DC): D = 2 u K

33 Nanosuperredes com interações repulsivas: Magnetismo, MIT, e distribuição de carga
Perfil de momento local, Si2, com Si = ni- ni  mede itinerância n Máximos nos sítios repulsivos Máximos nos sítios livres Estrutura de super-rede irrelevante DMRG [Malvezzi, Paiva e dS (2002)] Mobiilidade dos máximos de Si2

34 Momento local, Si2, como função da ocupação n
Caso homogêneo: máximo na ocupação isolante, n=1 [Paiva e dS (1998)] Lanczos Na SR, a posição do máximo depende do “aspect ratio”, ℓ  LU /L0  possível isolante de Mott em nI = [2+ ℓ]/[1+ ℓ]

35 c = E (Nc , Ne + 1) + E (Nc , Ne  1)  2 E (Nc , Ne)
Verificação do isolante de Mott: gap de carga c = E (Nc , Ne + 1) + E (Nc , Ne  1)  2 E (Nc , Ne) onde E (Nc , Ne) é a energia do estado fundamental para Nc células com Ne elétrons De fato, se n = nI tem-se   0 quando Nc    isolante de Mott Lanczos [Paiva e dS (1998)]

36 SR’s de Líquidos de Luttinger
Diagrama de fases longas longas Isolante sem gap isolante de Mott (gap) metal Isolante sem gap LL [Silva-Valencia, Miranda e dS (2001,2002)]

37 = 0  incompressível (Mott)  0  compressível (metal), mas
Compressibilidade: = 0  incompressível (Mott)  0  compressível (metal), mas uma das sub-redes é isolante sistema como um todo o é LL A SR permite a constru-ção de um material iso-lante sem gap LL [Silva-Valencia, Miranda e dS (2001,2002)]

38 Ordenamento magnético em nI = [2+ ℓ]/[1+ ℓ] :
SDW Lanczos [Paiva e dS (2000)] SDW Frustração Lanczos Em nI uma expansão em acoplamento forte leva a um modelo de Heisenberg numa super-rede, com acoplamento entre spins em diferentes camadas sendo mediado pelos elétrons na camada livre

39 Frustração quando Srep =0; induzida por dopagem
Dopando além de nI: exemplo com LU = 3, L0 = 1 4 spins na camada repulsiva: S = 0 frustração 5 spins na camada repulsiva: S  0 SDW recuperada Lanczos Frustração quando Srep =0; induzida por dopagem [Paiva e dS (2000)]

40 s = E (Nc , Ne, Sz = 1)  E (Nc , Ne, Sz = 0)
Análise do gap de spin s = E (Nc , Ne, Sz = 1)  E (Nc , Ne, Sz = 0) gaps extrapolados para Nc  Frustração s  0 SDW s = 0 Lanczos Lanczos Frustração e SDW também se manifestam no gap de spin [Paiva e dS (2000)]

41 Dois picos  períodos longo e curto
Que arranjo magnético domina a SDW? Analisemos o fator de estrutura magnético, No caso homogêneo, S (q) tem pico em qmax = 2kF =  n DMRG DMRG em alguns casos: picos em qmax  , e em q* =  cresce com U e com Ns  robusto Dois picos  períodos longo e curto [Malvezzi, Paiva e dS (2002)]

42 Evolução da posição dos picos com a densidade:
DMRG qmax/ n NB: qmax = 0 ↔ não é FM, mas frustração: Stot (repulsiva) = 0 SDW’s com todos os q geradas num intervalo 2n0, mais estreito que no caso homogêneo [Malvezzi, Paiva e dS (2002)]

43 ℓ = 1 Regiões num espaço de parâmetros 3D:
As regiões n < n0 e n > nU só são importantes para camadas “finas” ℓ = 1 [Malvezzi, Paiva e dS (2002)]

44 Evolução da posição do 2o. pico com a “espessura” do espaçador:
n = 11/6 L0 Lanczos qmax fornece medida do acoplamento de exchange entre as camadas oscila com L0, para uma densidade eletrônica fixa: período L0 = kF (c.f. previsão de Hartree-Fock para multicamadas magnéticas) [Paiva e dS (2000); Malvezzi, Paiva e dS (2002)]

45 n U Distribuição de Carga: CDW’s 2kF U  (n) 4kF
Caso homogêneo: velha pendência LL vs. Hubbard, mas... modo de carga 4kF de fato predomina sobre o 2kF, ao menos para valores de U suficientemente grandes. Acordo com descrição de LL: amplitude A1(n,U) do modo 2kF  0 para U  U  (n) Esquematicamente: n 1 2kF U  (n) 4kF U [Paiva e dS (2000b)]

46 Super-redes – examinemos o fator de estrutura de carga:
Distribuição de carga na camada repulsiva determina correlações: cúspides em q*= 4kF*, com 2kF* =  neff onde neff = n (LU + L0)  2 L0 Lanczos Não é efeito de tamanho: cúspides mais nítidas à medida em que Ns cresce [Paiva e dS (2002)] Lanczos

47 Evolução da posição da cúspide com a “espessura” do espaçador:
Lanczos q* fornece medida do acoplamento de carga entre as camadas oscila com L0, para uma densidade eletrônica fixa período L0 = 2kF [Paiva e dS (2002)]

48 Condutividade   ,  LL Condutividade confirma a natureza isolante do sistema, quer o gap de carga seja finito (Mott) ou nulo (“isolante parcial”) [Silva-Valencia, Miranda e dS (2001,2002)]

49 Nanosuperredes com interações atrativas: Supercondutividade
gap de carga  excitações de uma partícula C = E (Nc,Ne+1)+E (Nc,Ne - 1) E (Nc,Ne) peso de Drude  ()=DC()+g() C DC I  0 = 0 S  0  0 M = 0  0 fluxo magnético atravessando anel

50 n = 5/3 c = 0 Dc = 0 De fato, a introdução de uma camada livre adicional diminui a região SUC [T Paiva, M El-Massalami, & RRdS, em andamento (2002)]

51 e | U | Sistematização SUC Metal Co Ni Rh Pd Ir Pt Raio atômico
Lu Yb Tm Er Ho Y Dy Tb Gd Eu Sm Ce Nd Pr La 4 8 12 16 20 5 10 Metal SUC R Rh 2 B C Ir Pd Sistematização Co Ni Rh Pd Ir Pt R Pt B C 2 2 R Ni B C 2 2 e R Co B C 2 2 | U | Raio atômico Fixando os dados sobre a série do Ni, determina-se a fronteira SUC-M Adiciona-se as outras séries de metais de transição, respeitando o raio atômico Pode-se prever, a partir daí, se determinado composto será, ou não, SUC

52 Conclusões Geral: caráter 1D capta efeitos de interferências quânticas na direção da SR de dimensões maiores. Dois tipos de isolantes: Mott, para n = nI (ℓ) Compressível (gapless) para n  nI (ℓ) Super-redes magnéticas podem apresentar frustração, dependendo da combinação entre dopagem e aspect ratio Caracterização do acoplamento de exchange via S(q): densidades efetivas ncell, neff  qmax oscilação com L0 ↔ “superfície” de Fermi: per = /kF oscilação com n : período mais curto que no caso homogêneo

53 Distribuição de Carga:
modo dominante q* = 4kF*, com 2kF* = neff acoplamento de carga entre células oscila com L0: período = /2kF SR’s Supercondutoras critério (gap de carga e peso de Drude) OK modelo explica qualitativamente desfavorecimento de SUC quando L0 aumenta de 1 para 2 permite sistematização de dados

54 Próximos passos Nanosuperredes: Estudo mais detalhado das CDW’s (DMRG)
“Escadas” e “tubos” Campo magnético  Peso de Drude  GMR Tunelamento; biestabilidade na corrente (LLSL) Inclusão de momentos localizados (elétrons-f ) e interação com elétrons de condução: Kondo [no caso desordenado: implicações para semicondutores magnéticos diluídos (DMS)] 2D e 3D [QMC]: Magnetismo MIT, Transporte Efeitos de estrutura de bandas estabilização de estado FM Supercondutividade (com momentos localizados)

55 Referências M N Baibich et al., Phys Rev Lett 61, 2472 (1988)
S Brown and G Grüner, Sci Am 270 (4), 28 (1994) P C Canfield et al., Phys Today 51 (10), 40 (1998) D M Edwards et al., Phys Rev Lett 67, 493 (1991) P Grünberg et al., J Appl Phys 69, 4789 (1991) G Grüner, Rev.Mod.Phys. 60, 1129 (1988) G Grüner, Rev.Mod.Phys. 66, 1 (1994) M S Gudiksen et al., Nature 415, 617 (2002) J E Hirsch, Phys Rev B 31, 4403 (1985) J Jiang et al., Phys Rev Lett 74, 314 (1995) A L Malvezzi, Escola Bras Mec Est - Braz J Phys (2002) ? A L Malvezzi, T Paiva and R R dos Santos, Phys Rev B 66, (2002). L V Mercaldo et al., Phys Rev B 53, (1996) R Micnas et al., Rev Mod Phys 62, 113 (1990) E Miranda, Escola Bras Mec Est - Braz J Phys (2002) ? A Moreo and D J Scalapino, Phys Rev Lett 66, 946 (1991)

56 Th. Mühge et al., Phys Rev Lett 77, 1857 (1996)
T Paiva and R R dos Santos, Phys.Rev.Lett. 76, 1126 (1996) T Paiva and R R dos Santos, Phys.Rev.B 58, 9607 (1998) T Paiva and R R dos Santos, Phys.Rev.B 61, (2000) [b] T Paiva and R R dos Santos, Phys.Rev.B 62, (2000) T Paiva and R R dos Santos, Phys.Rev.B 65, (2002) S T Ruggiero et al., Phys Rev B 26, 4894 (1982) R T Scalettar et al., Phys Rev Lett 62, 1407 (1989) H J Schulz, Phys.Rev.Lett. 64, 2831 (1990) T Siegrist et al., Nature 367, 254 (1994) J Silva-Valencia, E Miranda, and R R dos Santos, J Phys Condens Matt 13, L619 (2001) J Silva-Valencia, E Miranda, and R R dos Santos, Phys Rev B 65, (2002) J Sólyom, Adv.Phys. 28, 209 (1979) J Voit, Rep.Prog.Phys. 57, 977 (1994) Z Yao et al., Nature 402, 273 (1999)


Carregar ppt "Correlações Eletrônicas em Nano-superredes"

Apresentações semelhantes


Anúncios Google