A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Resistência dos Materiais Assunto: Estática Luis Banaczek.

Apresentações semelhantes


Apresentação em tema: "Resistência dos Materiais Assunto: Estática Luis Banaczek."— Transcrição da apresentação:

1 Resistência dos Materiais Assunto: Estática Luis Banaczek

2 Vínculos Estruturais Denominamos vínculos ou apoios os elementos de construção que impedem os movimentos de uma estrutura. Nas estruturas planas, podemos classificá-los em 3 tipos.

3 Vínculos Estruturais Vínculos de 1ª classe Este tipo de vínculo impede o movimento de translação na direção normal ao plano de apoio, fornecendo-nos desta forma, uma única reação (normal ao plano de apoio).

4

5 Vínculos Estruturais Vínculos de 2ª classe Este tipo de vínculo impede apenas dois movimentos; o movimento no sentido vertical e horizontal, podendo formar duas reações. (vertical e horizontal). Representação simbólica:

6

7 Vínculos Estruturais Engatamento de 3ª Classe Este tipo de vínculo impede a translação em qualquer direção, impedindo também a rotação do mesmo através de um contramomento, que bloqueia a ação do momento de solicitação.

8

9 Estruturas Isostáticas São estruturas que apresentam as mínimas condições de manutenção do equilíbrio estático diante da atuação de qualquer carregamento. A estrutura isostática não apresenta reserva de segurança, por isso caso ocorra o rompimento de um de seus vínculos, a estrutura se tornará hipoestática. número de reações de apoio=número de equações de equilíbrio

10 Temos: 3 Reações de Apoio VA, VB e HB 3 Equações de Equilíbrio FH = 0, FV = 0 e Mz = 0

11 Estruturas Hipoestáticas As estruturas hipoestáticas são aquelas que não possuem as condições mínimas de manutenção do equilíbrio estático diante da solicitação de qualquer carregamento. Este tipo de estrutura NÃO pode ser projetada, por serem inadmissíveis para as construções devido à sua INSTABILIDADE. número de reações de apoio < número de equações de equilíbrio

12 Temos: 2 Reações de Apoio VA e VB 3 equações de Equilíbrio FH = 0, FV = 0 e Mz = 0

13 Estruturas Hiperestáticas Este tipo de estrutura possui reserva de segurança, apresentando portando condições além das necessárias para manter o equilíbrio estático. Caso haja, o rompimento de um de seus vínculos, a estrutura manterá a sua estaticidade. É necessário impor condições de compatibilidade de deformação para obter mais equações e resolver o sistema. número de reações de apoio > número de equações de equilíbrio

14 Temos: 4 Reações de Apoio VA, HA, VB e HB 3 Equações de Equilíbrio FH = 0, FV = 0 e Mz = 0

15 Classificação dos esforços Esforços externos ativos São os carregamentos que atuam sobre uma estrutura e cujos efeitos precisam ser analisados ao se projetá-la. Há os esforços considerados mortos, que são aqueles associados permanentemente à estrutura, como o peso de cada uma de suas partes, ou os esforços vivos que são aqueles cuja atuação varia de acordo com a situação.

16 Classificação dos esforços Esforços externos reativos São as reações do apoio de uma estrutura. Os apoios conectam as diversas partes da estrutura, impondo certas restrições no movimento desta. Ao restringir o movimento, o apoio introduz reações na estrutura e, deste modo, a estrutura se mantém em equilíbrio.

17 Esforços internos São as interações entre partes da mesma estrutura. Podem ser: tensões: esforços internos que descrevem a interação entre as partículas; esforços solicitantes: resultantes de força e momento que descrevem a interação no plano da seção transversal. Classificação dos esforços

18 Esforços solicitantes São os esforços internos à estrutura. Força normal (N) que é perpendicular à seção; Força cortante (V) na direção do plano da seção; Momento fletor (M), no plano perpendicular à seção. Caso ela seja tridimensional, também se tem um: Momento de torção (T), tende a torcer a estrutura em torno de seu eixo.

19

20 Esforço Cortante Positivo ( + )

21 Esforço Normal Positivo ( + )

22 Momento Fletor Sentido anti-horário: Positivo ( + )

23 Exemplos (BEER ; JOHNSTON. 1980, p Prob (adaptado). Calcular as reações nos apoios da viga sujeita ao carregamento mostrado. OBS: As cotas são em metros.

24

25

26 Viga biapoiada e isostática: Fx = 0: RAX=0 FY = 0: RAY – 16 – 20 – 18 + RBY = 0 RAY + RBY = 54 (1) MA = 0: - 16 X 2 – 20 X 2,4 -18 X 3,2 + RBY X 4,8 = 0 RBY = 26 kN (2) De (2) em (1) tem-se: RAY = 28 kN

27 Exemplos (HIBBELER. 1985, p Prob Calcular as reações nos apoios da viga sujeita ao carregamento mostrado. OBS: As cotas são em metros.

28

29

30 Viga biapoiada e isostática: Fx = 0: RAX=0 FY = 0: RAY + RBY – 5 X 2 – 10= 0 RAY + RBY = 20 (1) MA = 0: RBY X 10 – 10 X 8 – 5 X 2 X 5/2 = 0 RBY = 10,5 kN (2) De (2) em (1) tem-se: RAY = 9,5 kN

31 Bibliografia BEER, Ferdinand P.; JOHNSTON, Jr., E. Russell. Mecânica Vetorial para engenheiros: Estática, v ed. São Paulo: McGraw-Hill do Brasil, HIBBELLER, R. C. Mecânica: Estática, v. 1. Rio de Janeiro: campus, SENAI. SC. Resistência dos Materiais. Florianópolis: SENAI/SC, 2004.


Carregar ppt "Resistência dos Materiais Assunto: Estática Luis Banaczek."

Apresentações semelhantes


Anúncios Google