A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

CAPITULO 3 Esforços Internos e Método das Secções Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência.

Apresentações semelhantes


Apresentação em tema: "CAPITULO 3 Esforços Internos e Método das Secções Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência."— Transcrição da apresentação:

1 CAPITULO 3 Esforços Internos e Método das Secções Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

2 Esforço interno normal Esforço interno cortante Esforço interno flexão Esforço interno torção Método dos Nós Método das Secções Sumário: Classificação dos Esforços Internos e Método das Secções Competências: No final do capítulo os alunos deverão ser capazes de identificar os esforços internos numa secção do corpo em função do tipo de carregamento. Aplicar os métodos dos nós e das secções a um corpo deformável de modo a determinar os esforços internos devidos a um determinado carregamento. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

3 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais As solicitações aplicáveis a um corpo podem ser classificadas em solicitações simples ou compostas. Nas primeiras incluem-se os esforços do tipo tracção, compressão, corte, torção e flexão que produzem esforços unidimensionais. A área das solicitações compostas é formada por combinação de esforços simples e conduzem a estados de tensão duplos ou triplos. Esforços Internos - Introdução Tracção Compressão Flexão Torção Corte

4 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Classificação dos Esforços Internos e Método das Secções O projecto de qualquer elemento estrutural ou mecânico requer uma investigação das cargas actuantes no seu interior de modo a garantir que o material do qual é feito possa resistir à carga imposta. Esses esforços internos podem ser determinados através da utilização do método das secções. Esforço cortante Esforço normal Esforço flexão Esforços cortantes Esforços flexão Esforço normal Esforço torção

5 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Método das Secções O método das secções é utilizado para determinar as resultantes dos esforços internos. Determinar as forças reactivas nos apoios. Manter todas as forças, momentos e cargas distribuídas sobre o corpo. - Passar uma linha imaginária pelo ponto do corpo onde os esforços internos devem ser determinados. - Construir o diagrama de corpo livre de uma das partes seccionadas e indicar as incógnitas N, V, M e T. Forças externas N M V Momentos T - Aplicar as equações de equilíbrio. Procedimento de análise:

6 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Método das Secções - Exemplo de aplicação a uma viga Método das Secções - Exemplo de aplicação a uma treliça

7 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício Resolvido 1 - Uma barra é fixa através de uma das da suas extremidades e carregada conforme mostrado na figura 1-(a). Determine os esforços internos normais nos pontos B e C. Parte DC: Figura 1 Reacções nos apoios: O diagrama de corpo livre da barra é mostrado na figura 1-(b). Diagrama de corpo livre: Os esforços internos em B e C são obtidos utilizando os diagramas de corpo livre da barra seccionada mostrados na figura 1-(c). São escolhidas as partes AB e DC por terem uma menor quantidade de forças aplicadas. Equações de equilíbrio: Parte AB:

8 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício Resolvido 2 - Um eixo circular está sujeito ao carregamento indicado na figura 2-(a). Determine os esforços de torção internos nos pontos B e C. Figura 2 Reacções nos apoios: O diagrama de corpo livre do eixo é mostrado na figura 2-(b). Diagrama de corpo livre: Os esforços internos em B e C são obtidos utilizando os diagramas de corpo livre do eixo seccionado mostrados na figura 1-(c). São escolhidos os segmentos AB e CD por terem uma menor quantidade de forças aplicadas. Equações de equilíbrio: Parte CD: Parte AB:

9 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício Resolvido 3 - Uma viga suporta o carregamento mostrado na figura 3-(a). Determine os esforços internos actuantes nas secções transversais que passam pelos pontos B e C da viga. Figura 3 Reacções nos apoios: O diagrama de corpo livre da viga é mostrado na figura 3-(b). Diagrama de corpo livre: Os esforços internos em B e C são obtidos utilizando os diagramas de corpo livre da viga seccionada mostrados na figura 1-(c) e 1-(d). São escolhidos os segmentos AB e AC por terem uma menor quantidade de forças aplicadas. Equações de equilíbrio: Segmento AC: Segmento AB:

10 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício Resolvido 4 - Determine os esforços internos que actuam no ponto E da estrutura carregada conforme indicado na figura 4-(a). Reacções nos apoios: Análise do equilíbrio no pino C tal como indicado na figura 4-(b). Diagrama de corpo livre: Os esforços internos em E são obtidos utilizando o diagramas de corpo livre do segmento CE mostrado na figura 4-(c). Equações de equilíbrio: Figura 4

11 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício Resolvido 5 - O painel sinalizador mostrado na figura 5-(a) tem uma massa de 650 kg e é suportado por uma coluna fixa. As normas de projecto indicam que o carregamento uniforme máximo esperado por acção do vento, que ocorre na área onde o painel está localizado, é de 900 Pa. Determine os esforços internos gerados em A por acção deste carregamento. Diagrama de corpo livre: O modelo idealizado para o sistema é mostrado na figura 5-(b). Nesta figura são indicadas as dimensões necessárias para a resolução do problema. Pode-se considerar o diagrama de corpo livre da parte acima do ponto A, indicado na figura 5-(c), pois desta forma não se envolvem as reacções no apoio. Figura 5

12 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Equações de equilíbrio: Uma vez que o problema é tridimensional, será efectuada uma análise vectorial. Esforços internos no ponto A: Esforço normal: Esforço cortante: Esforço de torção: Esforços de flexão: P

13 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício 1 - Para o carregamento indicado e considerando que a coluna tem uma massa de 200 kg/m, determine os esforços internos que actuam na secção transversal que passa pelo ponto A.

14 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício 2 - Para o carregamento indicado e considerando que os apoios A e B permitem ao eixo girar livremente, determine os esforços internos que actuam nas secções transversais que passam pelos pontos C e D.

15 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício 3 - Para o carregamento indicado, determine os esforços internos que actuam nas secções transversais que passam pelos pontos C e D.

16 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício 4 - Determine os esforços internos resultantes que actuam nas secções transversais que passam pelos pontos D e E. 670 N 0,3 m 2,4 m1,2 m 0,9 m

17 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício 5 - Determine os esforços internos resultantes que actuam na secção transversal que passa pelo ponto B.

18 Análise de Estruturas - Treliças elemento sujeito a duas forças nó Uma treliça é uma estrutura composta por elementos rectos unidos em nós, localizados nas extremidades de cada elemento. Os elementos são delgados e incapazes de suportar cargas transversais. Todas as cargas devem ser aplicadas nas junções. Uma treliça deve ser assumida como uma estrutura composta por nós e elementos sujeitos a duas forças. A B C Uma treliça rígida não deve sofrer grandes deformações ou entrar em colapso sob acção de pequenas cargas. Uma treliça triangular composta por três elementos e três nós pode ser considerada uma treliça rígida. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

19 A B C D Uma treliça obtida pela adição de dois novos elementos à treliça básica triangular, ligados entre si por um novo nó (D), continuará a ser rígida. Treliças obtidas repetindo este procedimento são camadas de treliças simples. O número total de elementos é m = 2n - 3, onde n é o número total de nós. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Treliças Simples

20 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Tipos de Treliças em Aço

21 Fase 1 – diagrama do corpo livre; Fase 2 – cálculo das reacções; Fase 3 – utilização de um dos métodos; Fase 4 – estado final dos elementos da treliça. Métodos analíticos (método dos nós e das secções) A B C D E G P1P1 P2P2 P3P3 n n Condição necessária mas não suficiente para uma treliça rígida, completamente restringida e estaticamente determinada: m + r = 2n m – número de elementos; r – número de reacções nos apoios desconhecidas; n – número de nós. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Análise de Treliças

22 X Y A B E C D P P P L/ 2 1º Determinação das reacções 2º Equilíbrio num ponto (nó) Estruturas 2D Estruturas 3D RAy RAx RC RAx=-P N RAy=P/2 N RC=3/2P N DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Método dos Nós

23 Pergunta: Qual o primeiro nó onde se deve aplicar o equilíbrio num ponto? Resposta: O nó que apresente o mesmo número de incógnitas e equações. FAD FAB P P/2 Equilíbrio no ponto A: Estado dos elementos: AD em compressão e AB em tracção. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Método dos Nós (Escolha do nó)

24 A B C D E G P1P1 P2P2 P3P3 n n O método das secções é habitualmente preferido em relação ao método dos nós quando apenas se deseja determinar a força num dos elementos da treliça (ou num número reduzido de elementos). Para determinar a força no elemento BD da treliça mostrada, secciona-se através dos membros BD, BE e CE, removem-se esses membros e estuda-se a porção ABC da treliça como um corpo livre. A B C E P1P1 P2P2 F BD F BE F CE Nota: O método deve ser utilizado de modo a obter no máximo três forças desconhecidas, ou seja, cortar no máximo três elementos. Assim, pode ser utilizado igual número de equações de equilíbrio para resolver o problema. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Método das Secções

25 X Y A B E C D P P P L/2 1º Determinação das reacções RAy RAx RC RAx=-P N RAy=P/2 N RC=3/2P N 2º Equilíbrio de uma das partes da treliça seccionada RAy RAx F ED F BD F BA DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Método das Secções

26 RAy RAx 0 0,56P 1,25P A D B E 3º Determinação do estado dos elementos elementoestado DEnenhum DBcompressão ABtracção DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Método das Secções

27 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício Resolvido (Método dos Nós) - Determine as forças nos elementos FG, EG e GD da treliça simples.

28 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício Resolvido (Método das Secções) - Determine as forças nos elementos DE, DI e EI da treliça simples. EI

29 Método dos nós – normalmente mais eficiente para a determinação da capacidade de carga em todos os elementos da treliça. Método das secções – normalmente mais eficiente para a determinação do estado particular de um elemento da treliça. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Análise de Treliças - Conclusão

30 A B C D F G 2 m 12.5 kN 2 m 12.5 kN 2.5 m E Exercício 1 - Utilizando o método dos nós, determine a força em cada elemento da treliça mostrada. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

31 D E F G 1.5 kN 3 m A B C H J I K L 3 kN 6.75 m 3 kN 1.5 kN DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício 2 - Utilizando o método das secções, determine a força nos elementos FH, FI e GI da treliça Pratt representada.

32 50 kN 35 kN 1 m 2 m DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício 3: A barra de aço AB (E1 = 210 GPa) com diâmetro d 0 = 50 mm e as barras maciças em liga de alumínio BC (E2 = 70 GPa) e latão CD (E3 = 105 GPa), ambas com diâmetro d = 20 mm, formam o sistema composto por três segmentos representado na figura. determine: a) o diagrama de esforços internos normais; b) as tensões normais máximas em cada um dos segmentos; N [kN] N 1 =15 kN N 2 =15 kN N 3 = -35 kN x [MPa] 1 =7.64 MPa 2 = 47.75MPa 3 = MPa 1 =7.64 MPa x

33 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício 4: Considere uma viga com geometria de secção transversal representada na figura. Para o carregamento indicado: a) Determine as reacções nos apoios A e B. b) Construa os diagramas de esforços cortantes e de momentos flectores. 8 kN/m m = 500 kg 12 kN 1 m 2 m 1 m C D z y Capitulo 5 - Página 297

34 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício 5 – Um painel de propaganda é suportado por uma treliça, tal como representado na figura, e encontra-se submetido a uma carga horizontal provocada pelo vento de 4 kN. A análise isolada do painel mostra que 5/8 desta carga é suportada no ponto central C e o restante dividido igualmente entre D e B. Calcule as forças nas barras BE e BC. (Solução: BE=2,8 kN T; BC=1,5 kN T)

35 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Apêndice - Trigonometria


Carregar ppt "CAPITULO 3 Esforços Internos e Método das Secções Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência."

Apresentações semelhantes


Anúncios Google