A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

CAPITULO 2 Equilíbrio dos Corpos Deformáveis Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos.

Apresentações semelhantes


Apresentação em tema: "CAPITULO 2 Equilíbrio dos Corpos Deformáveis Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos."— Transcrição da apresentação:

1

2 CAPITULO 2 Equilíbrio dos Corpos Deformáveis Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

3 Classificação das forças Classificação dos vínculos Forças internas e externas Forças activas e reactivas Forças concentradas Forças distribuídas Forças de volume Vínculos a 2D e a 3 D Sumário : Equilíbrio dos Corpos Deformáveis Competências: No final do capitulo os alunos deverão ser capazes de identificar e calcular os vários tipos de forças. Substituir um carregamento por outro equivalente. Identificar e calcular forças reactivas nos vínculos. Aplicar as equações de equilíbrio do corpo rígido. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

4 Definição de Força: de um modo geral, força define-se como qualquer interacção entre corpos capaz de modificar o estado de repouso ou de movimento de um corpo (conceito dinâmico) ou de lhe causar uma deformação permanente ou temporária (conceito estático). Características do vector força - Ponto de aplicação: ponto do corpo onde a força actua. - Direcção: linha segundo a qual a força actua (ou qualquer recta paralela). - Sentido: o sentido de actuação da força é de onde e para onde a força actua. - Intensidade ou módulo: valor numérico expresso em unidades de força. - Unidade: Newton (N). Linha de Acção P Intensidade DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

5 F Externas e Internas Outras forças Concentradas e Distribuídas Tipos de Forças F(X) Forças internas Forças externas DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

6 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Forças de Volume

7 7 - Força de atrito - (força resultante do contacto entre corpos); 8 - Forças reacção, etc. Forças de contacto - são as forças nascidas do mútuo contacto entre os corpos. Classificação das forças quanto à sua natureza 1 - Força muscular - (exercida pelo homem ou animais); 2 - Força gravitacional - (força gravítica); 3 - Força magnética - (exercida pelos ímãs e electroímanes); 4 - Força electrostática - (exercida pelas cargas eléctricas em repouso); 5 - Força electromagnética - (pelas correntes eléctricas); 6 - Força elástica - (pelas molas e fluidos sob pressão); Forças de "acção à distância" - são forças de campo, nascidas em função das suas propriedades. DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

8 Exemplos de Forças Forças de Tracção Forças de Compressão Forças electrostáticas + - Forças magnéticas N S Terra Forças gravitacionais Lua m DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

9 Revisões Equilíbrio em Sistemas de Forças no Plano e no Espaço Tipos de vínculos ou apoios Condições de Equilíbrio de um corpo rígido no Plano Condições de Equilíbrio do corpo rígido no Espaço Sumário 8 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

10 Carregamentos São forças que actuam sobre o corpo e que representam o efeito das interacções não permanentes deste corpo com outros corpos. Os tipos de carregamentos mais comuns são as cargas concentradas, as distribuídas e as cargas momento. Vínculos e Reacções A função dos vínculos (apoios) é a de restringir os movimentos do corpo, provocando reacções nas direcções dos movimentos impedidos. 1 - Apoio Móvel (rolete): é um apoio de 1ª classe pois impede 1 movimento. Representação : R Tipos de apoios: 9 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

11 2 - Apoio fixo: é um apoio de 2ª classe pois impede 2 movimentos. V H Representação: 3 - Encastramento: é um apoio de 3ª classe pois impede 3 movimentos. H V M Representação: 10 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

12 Reacções nos apoios e ligações - 2D 11 RoletesSuporte BasculanteSuperfície Lisa Apoio ou Ligação Reacção Nº Incógnitas Cabo curto Força com linha de acção conhecida Biela curta Cursor sobre haste lisaPino deslizante sem atrito DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

13 Reacções nos apoios e ligações - 2D 12 Apoio ou Ligação ReacçãoNº Incógnitas Articulação sem atrito ou apoio fixo Superfície rugosa Encastramento Força com linha de acção desconhecida Força e Binário DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

14 Reacções nos apoios e ligações - 3 D 13 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Força com linha de acção conhecida Esfera Superfície lisa Cabo Roda sobre carril Rolete sobre superfície rugosa Duas componentes de força Três componentes de força Superfície rugosa Junta esférica

15 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Reacções nos apoios e ligações - 3 D Junta universal Três componentes de força e um momento Três componentes de força e três momentos Encastramento Dobradiça e chumaceira concebida para suportar cargas radiais Duas componentes de força e dois momentos Três componentes de força e dois momentos Junta articulada Dobradiça e chumaceira concebida para Suportar esforços axiais e cargas radiais

16 Introdução à estática do corpo rígido Como sabemos pelas leis de Newton, uma força aplicada a um corpo provoca nesse corpo uma alteração da sua velocidade. Se tivermos mais que uma força a 2ª Lei de Newton permite escrever: Por outro lado, se o corpo estiver de alguma forma preso (como uma porta, por exemplo), a força pode ter um outro efeito, que é o de provocar a rotação do corpo em torno de um eixo. Assim, uma força tende a fazer rodar um corpo em torno de um eixo que não intersecte a sua linha de acção e não lhe seja paralela. Esta tendência é chamada de momento da força, em torno do eixo considerado, de tal forma que se verifica : 15 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

17 Para que um corpo rígido esteja em equilíbrio é necessário que a soma vectorial de todas as força externas, assim como a soma vectorial dos correspondentes momentos, sejam nulos. Condições de equilíbrio de um corpo rígido no plano Condições de Equilíbrio de translação de um corpo rígido no plano: Estas 2 expressões vectoriais são equivalentes, a 3 equações escalares: Equilíbrio de translação Equilíbrio de rotação 16 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

18 Para que um corpo rígido esteja em equilíbrio é necessário que a soma vectorial de todas as força externas, assim como a soma vectorial dos correspondentes momentos, sejam nulos. Condições de equilíbrio de um corpo rígido no espaço tridimensional Condições de Equilíbrio de translação de um corpo rígido no espaço: Estas 2 expressões vectoriais são equivalentes, a 6 equações escalares: Equilíbrio de translação Equilíbrio de rotação 17 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

19 1º Identificar os nós. 2º Verificar se existem: - Cargas Inclinadas - Em caso afirmativo, substituir pelas componentes paralela e perpendicular ao eixo da barra. Cargas Distribuídas - Para o cálculo das reacções imaginar uma Carga Concentrada no baricentro da distribuição, com o valor equivalente ao da área da carga distribuída. 3º Analisar o tipo de apoio e adoptar de forma coerente com as cargas activas, as reacções nas direcções dos eixos referenciais. 4º Aplicar as equações de equilíbrio a estática no plano, determinando com isso os módulos das reacções. Se algum resultado for um número negativo, significa que o sentido adoptado para aquela reacção está invertido. ( F=0, F z =0 e M o = 0). Procedimento de Resolução de problemas de equilíbrio do corpo rígido

20 Exercício resolvido DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

21 Exercício de aplicação: A viga homogénea mostrada na figura tem uma massa de 200 kg e destina-se ao transporte de cargas através da movimentação de um gancho. O gancho pode operar entre as posições x = 0,2 m e x=3,8 m e o cabo que sustenta a estrutura pode suportar uma força de tracção máxima de 30 kN. a) Construa o diagrama de corpo livre da viga. b) Determine o valor máximo de massa que a estrutura pode suportar, considerando que o gancho tem de efectuar um percurso completo ao longo da viga. c) Determine a reacção e respectiva intensidade no apoio A, para a situação da alínea anterior, e quando o gancho se encontra no final do percurso (x = 3,8 m). m = ? DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

22 Exercício - Para o carregamento indicado na figura calcule as forças de reacção nos apoios A e D. 8 kN 12 kN.m 2 kN/m 1 m 2 m DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais

23 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais ESTRUTURA DE MÁQUINAS

24 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais ESTRUTURA DE MÁQUINAS Exercício aplicação 1: A figura mostra um mecanismo destinado a compactar latas. Calcule a força de compactação P quando é aplicada uma força de 400 N no braço do mecanismo. F=400 N B A P E 1m 0,5m

25 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais ESTRUTURA DE MÁQUINAS 2000 N Exercício aplicação 2: A figura mostra uma estrutura composta por dois elementos. Para o carregamento indicado, calcule as forças reactivas nos pinos B e C. Nota: Despreze o peso dos elementos AB e BC.

26 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais ESTRUTURA DE MÁQUINAS Exercício aplicação 3: A figura mostra uma estrutura composta por dois elementos. Para o carregamento indicado, calcule as forças suportadas pelos pinos de ligação A, B e D. Nota: Despreze o peso dos elementos AC e BD.

27 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais ESTRUTURA DE MÁQUINAS Exercício aplicação 4: A pá mostrada é controlada pelos 3 cilindros hidráulicos e na posição particular mostrada pode aplicar uma força horizontal P=10 kN. Calcule as forças suportadas pelos pinos em A e E. Despreze o peso das diferentes peças. Solução: A=22,4 KN, E=36,7 kN

28 DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos Materiais Exercício aplicação 5: A unidade motora A do tractor destinado ao transporte de inertes, representado na figura seguinte, tem massa de 4 Mg e centro de massa no ponto G 1. O atrelado B que se encontra totalmente carregado tem massa igual a 24 Mg e centro de massa em G 2. A posição do atrelado é controlada por dois cilindros hidráulicos EF, um de cada lado da máquina. Considerando que as rodas giram livremente não existindo, por isso, componentes horizontais de força de reacção sobre as rodas, determine: a) a força de compressão F, em cada um dos cilindros; b) a intensidade da força que actua em cada um dos pinos H, situados um em cada lado do reboque. Solução: F=131,8 kN; H=113,9 kN ESTRUTURA DE MÁQUINAS


Carregar ppt "CAPITULO 2 Equilíbrio dos Corpos Deformáveis Resistência dos Materiais DEMGi - Departamento de Engenharia Mecânica e Gestão Industrial Resistência dos."

Apresentações semelhantes


Anúncios Google