A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

TESTE DE HIPÓTES Trata-se de uma técnica para se fazer a inferência estatística sobre uma população a partir de uma amostra.

Apresentações semelhantes


Apresentação em tema: "TESTE DE HIPÓTES Trata-se de uma técnica para se fazer a inferência estatística sobre uma população a partir de uma amostra."— Transcrição da apresentação:

1 TESTE DE HIPÓTES Trata-se de uma técnica para se fazer a inferência estatística sobre uma população a partir de uma amostra

2 TEORIA POPPERIANA NÃO SE PODE PROVAR NADA, APENAS DESPROVAR. SÓ APRENDEMOS QUANDO ERRAMOS. É MAIS FACIL REFUTAR DO QUE PROVAR ALGUMA ASSERTIVA. OS ESTATÍSTICOS NÃO PERGUNTAM QUAL É A PROBABILIDADE DE ESTAREM CERTOS, MAS A PROBABILIDADE DE ESTAREM ERRADOS. Para fazerem isso estabelecem um hipótese nula.

3 PRINCIPAIS CONCEITOS HIPÓTESE ESTATÍSTICA Trata-se de uma suposição quanto ao valor de um parâmetro populacional, ou quanto à natureza da distribuição de probabilidade de uma variável populacional. TESTE DE HIPÓTESE É uma regra de decisão para aceitar ou rejeitar uma hipótese estatística com base nos elementos amostrais

4 PRINCIPAIS CONCEITOS TIPOS DE HIPÓTESES Designa-se por Ho, chamada hipótese nula, a hipótese estatística a ser testada, e por H 1, a hipótese alternativa. A HIPÓTESE NULA É UMA ASSERTIVA DE COMO O MUNDO DEVERIA SER, SE NOSSA SUPOSIÇÃO ESTIVESSE ERRADA. A hipótese nula expressa uma igualdade, enquanto a hipótese alternativa é dada por uma desigualdade. Ex: Ho - = 1,65 m H 1 - 1,65 m

5 TIPOS DE ERRO DE HIPÓTESE EXISTEM DOIS TIPOS DE ERRO DE HIPÓTESE. Erro tipo 1 - rejeição de uma hipótese verdadeira; Erro tipo 2 – aceitação de uma hipótese falsa. As probabilidades desses dois tipos de erros são designadas e. A probabilidade do erro tipo I é denominada nível de significância do teste.

6 LÓGICA DO TESTE DE SIGNIFICÂNCIA ATRIBUEM-SE BAIXOS VALORES PARA, GERALMENTE 1-10%; FORMULA-SE Ho COM A PRETENSÃO DE REJEITÁ- LA, DAÍ O NOME DE HIPÓTESE NULA; SE O TESTE INDICAR A REJEIÇÃO DE Ho TEM-SE UM INDICADOR MAIS SEGURO DA DECISÃO; CASO O TESTE INDIQUE A ACEITAÇÃO DE Ho, DIZ-SE QUE, COM O NÍVEL DE SIGNIFICÂNCIA, NÃO SE PODE REJEITAR Ho.

7 ESTATÍSTICA NÃO PARAMÉTRICA São extremamente interessantes para análises de dados qualitativos.

8 As técnicas de estatística não paramétrica são particularmente adaptáveis aos dados das ciências do comportamento. A aplicação dessas técnicas não exige suposições quanto à distribuição da população da qual se tenha retirado amostras para análises. Podem ser aplicadas a dados que se disponham simplesmente em ordem, ou mesmo para estudo de variáveis nominais.Contrariamente à estatística paramétrica, onde as variáveis são, na maioria das vezes, intervalares. Exigem poucos cálculos e são aplicáveis para análise de pequenas amostras. Independe dos parâmetros populacionais e amostrais (média, variância, desvio padrão).

9 TIPOS DE TESTE Qui-Quadrado Teste dos sinais Teste de Wilcoxon Teste de Mann-Whitney Teste da Mediana Teste de Kruskal-Wallis

10 QUI-QUADRADO ( 2 ) Testes de Adequação de amostras e Associação entre variáveis

11 QUI-QUADRADO ( 2 ) Teste mais popular Denominado teste de adequação ou ajustamento. Usos 1.Adequação ou Aderência dos dados: freqüência observada adequada a uma freqüência esperada); 2.Independência ou Associação entre duas variáveis Comportamento de uma variável depende de outra. 2 =

12 QUI-QUADRADO ( 2 ) Restrições ao uso: Se o número de classes é k=2, a freqüência esperada mínima deve ser 5; Se k >2, o teste não deve ser usado se mais de 20% das freqüências esperadas forem abaixo de 5 ou se qualquer uma delas for inferior a 1.

13 ADEQUAÇÃO DOS DADOS Exemplos: 1.avaliar se uma moeda ou um dado é honesto; 2.número de livros emprestados em um biblioteca durante os dias de uma determinada semana; 3.Tipo de sangue para uma determinada raça

14 ADEQUAÇÃO DOS DADOS PROCEDIMENTO 1.Enunciar as hipóteses (Ho e H1); 2.Fixar ; escolher a variável 2 com = (k-1). k é o número de eventos; 3.Com auxílio da tabela de 2, determinar RA (região de aceitação de Ho) e RC (região de rejeição de Ho) 2

15 ADEQUAÇÃO DOS DADOS EXEMPLO Em 100 lances de moeda, observaram-se 65 coroas e 35 caras. Testar se a moeda é honesta. 1°Ho- a moeda é honesta; H1- a moeda não é honesta; 2° = 5%; escolhe-se um 2, pois k = 2 e 2-1=1; 3°Determinação de RA e RC; 2 = 2 = (35-50) 2 /50 + (65-50) 2 /50=9 2 tab = 3,84, logo rejeita-se Ho. A moeda não é honesta. EventosCaraCoroa Freq. observada3565 Freq. Esperada50

16 ADEQUAÇÃO DOS DADOS 4 ocorrência de 4 tipos de sangue em uma dada raça K=4, =3 e = 2,5% 2 =( ) 2 /180 + ( ) 2 /480 + ( ) 2 /200 + ( ) 2 /140 2 calc = tab = 9,25 Logo rejeita-se Ho com 2,5% de probabilidade de erro. ClassesABABO Freq. Observada Freq. esperada

17 ADEQUAÇÃO DOS DADOS Número de acidentes na rodovia, de acordo com o dia da semana Freqüência esperada – 1/7 x 175 = 25 2 calc =12,0 2 tab =12,6 Logo aceita-se Ho com 95% de probabilidade de acerto. ClassesSegTerQuaQuiSexSabDom Número de acidentes ClassesSegTerQuaQuiSexSabDom Acidentes Observados Acidentes esperados25

18 INDEPENDÊNCIA OU ASSOCIAÇÃO ENTRE DUAS VARIÁVEIS EXEMPLOS Dependência entre sabor de pasta de dente e o bairro; Notas dos alunos e nível salarial; Efeito da vacinação em animais;

19 INDEPENDÊNCIA OU ASSOCIAÇÃO ENTRE DUAS VARIÁVEIS A representação das freqüências observadas é dada por uma tabela de dupla entrada ou tabela de contingência. PROCEDIMENTO 1.Ho: as variáveis são independentes; H1: as variáveis são dependentes; 2.Fixar. Escolher a variável qui-quadrado com = (L-1) x (C-1), onde L = número de linhas da tabela de contingência e C+ número de colunas. 3.Com auxílio da tabela calculam-se RA e RC

20 INDEPENDÊNCIA OU ASSOCIAÇÃO EXEMPLO Dependência entre bairro e escolha do sabor de pasta de dente Dados: Ho : a preferencia pelo sabor independe do bairro; H1: a preferência pelo sabor depende do bairro = 5% 2 tab = = (4-1) x (3-1) = 6 graus de liberdade Freqüência esperada = (soma da linha i) x (soma da coluna J)/(total de observações) 2 = Sabor Bairros ABC Limão Chocolate Hortelã Menta

21 INDEPENDÊNCIA OU ASSOCIAÇÃO Tabela de freqüências esperadas Fe11 = 200 x 150/500 = 60 Fe12 = 200 x 100/500 = 40 Fe13 = 200 x 250/500 = 100 Fe21 = 125 x 150/500 = 37.5 Fe22 = 125 x 100/500 = 25 Fe23 = 125 x 250/500 = 62.5 Fe31 = 50 x 150/500 = 15 Fe32 = 50 x 100/500 = 10 Fe33 = 50 x 250/500 = 25 2 cal =37.88 Fe41 = 125 x 150/500 = tab =12.6 Fe42 = 125 x 100/500 = 25 Logo rejeita-se Ho Fe43 = 125 x 250/500 = 62,5 SABORBAIRRO ABC (1)Limão (2)Chocolate (3)Hortelã (4)Menta

22 TESTE DOS SINAIS Análise de dados emparelhados (O mesmo indivíduo é submetido a duas medidas)

23 TESTE DOS SINAIS É utilizado na análise de dados emparelhados. Situações em que o pesquisador deseja determinar se duas condições são diferentes. A variável pode ser intervalar ou ordinal. O nome do teste dos sinais se deve ao fato de se utilizar sinais + e – em lugar do dados numéricos. A lógica do teste é que as condições podem ser consideradas iguais quando as quantidades de + e _ forem aproximadamente iguais. Isto é, a proporção de + equivale 50%, ou seja: p=0,5.

24 TESTE DOS SINAIS PROCEDIMENTO 1.Ho: não há diferença entre os grupos, ou seja: p = 0,5; H1: há diferença, ou seja: uma das alternativas a)p 0,5 -Distribuição z bicaudal. b) p 0,5 – Distribuição z unicaudal a esquerda. c) p 0,5 – Distribuição z unicaudal a direita. 2.Fixar. Escolher a distribuição N(0,1) se n>25 ou Binomial se n Com auxílio da tabela, determinar-se RA e RC (para n > 25), caso n <25 utiliza-se distribuição binomial. 4.Cálculo do valor da variável Z

25 TESTE DOS SINAIS Exemplo: Sessenta alunos matricularam-se num curso de inglês. Na primeira aula aplica- se um teste que mede o conhecimento da língua. Após seis meses, aplica-se um segundo teste. Os resultados mostram que 35 alunos apresentaram melhora (35 +), 20 se conduziram melhor no primeiro teste (20 -) e 5 não apresentaram modificações (5 0). Ho: O curso não alterou (p=0,50) H1: O curso melhorou o conhecimento de inglês (p > 0,5). = 5% (variável N(0,1). Cálculo da variável Z. Z cal =, onde: y - número de sinais positivos (35); n – tamanho da amostra descontado os empates (60-5=55); p – 0,5 q – 1-p = 0,5 Z cal = = 2,02 Z tab = 1.64, logo rejeita Ho.

26 Teste de Wilcoxon É uma extensão do teste de sinais. É mais interessante pois leva em consideração a magnitude da diferença para cada par. Exemplo: um processo de emagrecimento em teste. Cada par no caso é o mesmo indivíduo com peso antes e depois do processo.

27 Teste Mann-Whitney É usado para testar se das amostras independentes foram retiradas de populações com média iguais. Trata-se de uma interessante alternativa ao teste paramétrico para igualdade de médias, pois o teste não exige considerações sobre a distribuição populacional. Aplicado à variáveis intervalares e ordinais. Exemplo: a média de vendas de dois shoppings são diferentes?.

28 Teste da mediana Trata-se de uma alternativa ao teste de Mann-Whitney. Testa as hipótese se dois grupos independentes possuem mesma mediana. Dados ordinais e intervalares.

29 Teste Kruskal-Wallis Trata-se de um teste para decidir se K amostras (K>2) independentes provêm de populações co médias iguais. Exemplo: testar, no nível de 5% de probabilidade, a hipótese de igualdade das médias para os três grupos de alunos que foram submetidos a esquemas diferentes de aulas. Notas para uma mesma prova. Aulas com recursos audiovisuais, aulas expositivas e aulas ensino programado.


Carregar ppt "TESTE DE HIPÓTES Trata-se de uma técnica para se fazer a inferência estatística sobre uma população a partir de uma amostra."

Apresentações semelhantes


Anúncios Google