A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Estatística Aplicada Prof. Afonso Chebib Estatística Aplicada (Aula 4) 1.

Apresentações semelhantes


Apresentação em tema: "Estatística Aplicada Prof. Afonso Chebib Estatística Aplicada (Aula 4) 1."— Transcrição da apresentação:

1 Estatística Aplicada Prof. Afonso Chebib Estatística Aplicada (Aula 4) 1

2 Estatística Aplicada Prof. Afonso Chebib Ramo da Estatística que estuda como fazer afirmações sobre características de uma população baseando-se em resultados de uma amostra. Exemplos do dia a dia do uso de informações da amostra para concluir sobre o todo: Como a cozinheira verifica a quantidade de sal na comida ou como a dona de casa decide sobre a compra de uma fruta na feira após provar um pedaço. Pode ser razoável supor que a distribuição das alturas dos brasileiros adultos possa ser representada por um modelo normal, mas como descobrir seus parâmetros (média e variância)? Medir a altura de todos os brasileiros, assim como determinada caracteristica de qualquer população é quase sempre inviável por apresentar: Alto custo, tempo muito grande ou até pois consiste num processo destrutivo (durabilidade de lampadas por exemplo). Inferência Estatística 2

3 Estatística Aplicada Prof. Afonso Chebib Solução: selecionar parte dos elementos da população (amostra), analisá-la e inferir propriedade para o todo. Exemplos: População e amostra 1- Pesquisar os salários dos 5000 funcionários de uma empresa através de uma amostra de 300 funcionários escolhidos cuidadosamente. 2- Estudar a proporção de indivíduos favoráveis a execução de um projeto na cidade X. Sorteia-se 200 moradores aleatoriamente para fazer a questão. 3- Investigar o tempo de duração de um novo modelo de lâmpadas através do teste de 100 unidades. Investigar se uma moeda é honesta jogando-se 50 vezes e anotando a proporção de caras e coroas Inferência Estatística 3

4 Estatística Aplicada Prof. Afonso Chebib Inferência Estatística 4

5 Estatística Aplicada Prof. Afonso Chebib Distribuição amostral da média - Teorema do Limite Central 5

6 Estatística Aplicada Prof. Afonso Chebib Distribuição amostral da média - Teorema do Limite Central 6

7 Estatística Aplicada Prof. Afonso Chebib 7

8 Estatística Aplicada Prof. Afonso Chebib Conforme n vai aumentando o histograma vai se aproximando de uma curva normal. Mesmo a população não apresentando distribuição normal de algum parâmetro, as médias amostrais se distribuirão normalmente para um n tendendo ao infinito. Para populações com distribuição normal, qualquer n já garante uma distribuição normal das médias amostrais. Considera-se que para qualquer distribuição populacional, um n>=30 já apresenta uma boa aproximação a uma curva normal. 8

9 Estatística Aplicada Prof. Afonso Chebib Deseja-se estimar a média populacional, μ de uma determinada variável, pela média amostral, X. Qual a magnitude do erro que cometemos nesta estimação? Erro Amostral 9

10 Estatística Aplicada Prof. Afonso Chebib O gerente de operações de um grande banco, desejando determinar o tempo médio que os clientes gastam no auto atendimento, realizou a medição do tempo gasto por um grande número de clientes e obteve uma população normalmente distribuída com média de 3,68 minutos e desvio padrão de 0,15 minutos. Se uma amostra de 25 clientes for escolhida ao acaso entre milhares dos que utilizam os auto atendimentos por dia, que resultado podemos esperar para o tempo médio dessa amostra? 3,70 min? 2,00 min? 3,68 min? Exemplo 10

11 Estatística Aplicada Prof. Afonso Chebib Qual a probabilidade de uma observação X entre 3,65 e 3,68 min? Qual a probabilidade de se obter uma média amostral X entre 3,65 e 3,68? Exemplo 11

12 Estatística Aplicada Prof. Afonso Chebib Distribuição de médias amostrais 12

13 Estatística Aplicada Prof. Afonso Chebib Simulação de populações normais 13

14 Estatística Aplicada Prof. Afonso Chebib Qual a probabilidade de se obter uma média amostral X entre 3,65 e 3,68 min? Logo, 34,13% de todas as amostras possíveis de tamanho igual a 25 teriam uma média amostral entre 3,65 e 3,68 minutos Exemplo (cont.) 14

15 Estatística Aplicada Prof. Afonso Chebib Como esses resultados seriam alterados se a amostra contivesse 100 clientes, ao invés de 25? Exemplo 15

16 Estatística Aplicada Prof. Afonso Chebib Ao invés de determinar a proporção de médias amostrais que espera- se que caiam dentro de um certo intervalo, o gerente de operações está interessado em encontrar um intervalo simétrico em torno da média populacional que incluísse 95% das médias amostrais. Deseja-se determinar uma distância acima e abaixo da média μ que contenha uma área especificada da curva normal Intervalo de confiança 16

17 Estatística Aplicada Prof. Afonso Chebib Intervalo de confiança 17

18 Estatística Aplicada Prof. Afonso Chebib Se, para cada amostra de tamanho n, construirmos um intervalo de confiança como mostrado acima, 95% dos intervalos conterão a média populacional. E se não conhecemos μ? 18

19 Estatística Aplicada Prof. Afonso Chebib Média populacional desconhecida –A satisfação dos clientes de uma instituição financeira pode ser avaliada através de um score, que segue uma distribuição aproximadamente normal, com média desconhecida. Sabe-se, de estudos anteriores, que o desvio padrão desse score é 10. Sorteada uma amostra de 50 clientes, obteve-se um score médio (amostral) de 70. Qual o intervalo de 95% de confiança para o score médio populacional? Intervalo de confiança 19

20 Estatística Aplicada Prof. Afonso Chebib Intervalo de confiança 20

21 Estatística Aplicada Prof. Afonso Chebib A margem de erro será tão menor, quanto maior for o tamanho da amostra (n) e o desvio padrão populacional Margem de Erro 21

22 Estatística Aplicada Prof. Afonso Chebib 22

23 Estatística Aplicada Prof. Afonso Chebib Colocar mais exemplos 23


Carregar ppt "Estatística Aplicada Prof. Afonso Chebib Estatística Aplicada (Aula 4) 1."

Apresentações semelhantes


Anúncios Google