A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

SLIDE 14 -A Transformação de Perspectiva Uma visão em perspectiva pode ser gerada simplesmente pela projeção de cada ponto de um objeto no plano da tela,

Apresentações semelhantes


Apresentação em tema: "SLIDE 14 -A Transformação de Perspectiva Uma visão em perspectiva pode ser gerada simplesmente pela projeção de cada ponto de um objeto no plano da tela,"— Transcrição da apresentação:

1 SLIDE 14 -A Transformação de Perspectiva Uma visão em perspectiva pode ser gerada simplesmente pela projeção de cada ponto de um objeto no plano da tela, como na figura 4. As coordenadas da imagem projetada do ponto P medido nas coordenadas do observador são facilmente calculadas. Figura 5 - O plano mostrando detalhes da projeção em perspectiva. (13)

2 SLIDE 15 -A Transformação de Perspectiva Alternativamente, podemos converter para coordenadas de tela, incluindo uma especificação da localização da janela pela qual a imagem é mostrada (14) Os quatro parâmetros são dados em notação center-size: a janela está centrada em, tem unidades de altura e unidades de largura. Estes quatro parâmetros podem ser determinados a partir dos parâmetros da janela de visualização. Por exemplo, e. A transformação de perspectiva é fundamentalmente diferente daquela para rotação, translação e mudança de escala: ela envolve divisão pelo valor da coordenada, enquanto as outras envolvem apenas multiplicações e adições. Gerar uma imagem em perspectiva verdadeira, requer divisão pela profundidade de cada ponto.

3 SLIDE 16 - Visão em perspectiva de um cubo Considere um cubo centrado na origem do sistema de coordenadas do mundo, definido pelos seguintes pontos e linhas LinhasPontos xyz AB, BC,A1 CD, DA,B11 EF, FG,C1 GH, HED AE, BF,E11 CG, DHF111 G11 H 1 Vamos observar este cubo a partir do ponto (6,8,7.5), com o eixo de visualização apontando diretamente para a origem do sistema de coordenadas do mundo. Existe ainda um grau de liberdade sobrando, que é uma rotação arbitrária em torno do eixo : vamos assumir que o eixo está no plano z = 7.5.

4 SLIDE 17 - Visão em perspectiva de um cubo 1) O sistema de coordenadas é transladado para (6,8,7.5), como mostrado na figura 10a. O ponto (6,8,7.5) no sistema de coordenadas original passa a ser a origem: 2) Rotação do sistema de coordenadas em torno do eixo de -90, como mostrada na figura 10b. Observe que, devido à utilização da transformação inversa, substituímos = 90 na equação 4:

5 SLIDE 18 - Visão em perspectiva de um cubo Figura 10 - Cinco passos para realizar a transformação de visualização: (a) Translação; (b) Rotação em torno do eixo x; (c) Rotação em torno do eixo y; (d) Rotação em torno do eixo x; (e) Invertendo o eixo z.

6 SLIDE 19 - Visão em perspectiva de um cubo 3) Rotação em torno do eixo, de um ângulo, tal que o ponto (0,0,7.5) ficará localizado no eixo, como mostrado na figura 10c. Temos que e : 4) Rotação em torno do eixo, de um ângulo, tal que a origem do sistema de coordenadas original fique sobre o eixo, como mostrado na figura 10d. Temos que e :

7 SLIDE 20 - Visão em perspectiva de um cubo 5) Finalmente, revertendo o sentido do eixo, de modo a criar um sistema de coordenadas demão-esquerda, de acordo com as convenções do sistema de coordenadas do observador, como mostrado na figura 10e. Uma matriz de mudança de escala é utilizada Isto completa as cinco transformações primitivas necessárias para estabelecer a transformação de visualização. Suponha que desejamos preencher uma tela de 30 x 30 cm, desenhada para ser vista de uma distância de 60 cm, e cujo o sistema de coordenadas da tela vai de 0 a Assim, D = 60, S = 15, e. A transformação 16 é, portanto

8 SLIDE 21 - Visão em perspectiva de um cubo e a equação 18 passa a ser (23) Todos os detalhes das transformações já foram especificados. Cada vértice do cubo é transformado pela matriz VN, sofre um processo de clipping, e convertido para coordenadas de tela usando-se a equação 23.

9 SLIDE 22 - Visão em perspectiva de um cubo Podemos agora aplicar esta transformação aos oito vértices do cubo: xcxc ycyc zczc A B C D E F G H

10 SLIDE 23 - Visão em perspectiva de um cubo Apesar da necessidade da rotina de clipping ser aplicada a cada linha no cubo, está aparente na tabela que todos os vértices estão dentro da pirâmide de visualização, e o algoritmo de clipping irá aceitar trivialmente todas as linhas. As coordenadas de tela das extremidades das linhas são calculadas com a equação 23, e as linhas são desenhadas como mostrado na figura 11. Figura 11 - A visão em perspectiva do cubo, gerada pelos cálculos do exemplo do texto.


Carregar ppt "SLIDE 14 -A Transformação de Perspectiva Uma visão em perspectiva pode ser gerada simplesmente pela projeção de cada ponto de um objeto no plano da tela,"

Apresentações semelhantes


Anúncios Google