A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

E XERCÍCIOS Interpolação. 1)O número de bactérias, por unidade de volume, existente em uma cultura após x horas é apresentado na tabela: a) Calcule P.

Apresentações semelhantes


Apresentação em tema: "E XERCÍCIOS Interpolação. 1)O número de bactérias, por unidade de volume, existente em uma cultura após x horas é apresentado na tabela: a) Calcule P."— Transcrição da apresentação:

1 E XERCÍCIOS Interpolação

2 1)O número de bactérias, por unidade de volume, existente em uma cultura após x horas é apresentado na tabela: a) Calcule P 1 ( t ) {Interpolação Linear} b) Determine P 2 ( x ). {Interpolação Quadrática} c) Calcule P 2 ( t ). {Interpolação Quadrática} d) Calcule L 2 ( t ). {Polinômio de Lagrange} Onde t é igual ao instante 3:42 h. número de horas (x)01234 número de bactérias por volume unitário (y)

3 2)Seja f(x) da na forma: a) Escolher as abscissas dos pontos para calcular f (0,47) usando um polinômio de grau 2. b) Monte a tabela de diferenças dividas e obtenha f (0,47) usando um polinômio de grau 2 na forma de Newton. x 0,20,340,40,520,6 f( x )0,160,220,270,290,32

4 1)O número de bactérias, por unidade de volume, existente em uma cultura após x horas é apresentado na tabela: a) Calcule P 1 ( t ) {Interpolação Linear} b) Determine P 2 ( x ). {Interpolação Quadrática} c) Calcule P 2 ( t ). {Interpolação Quadrática} d) Calcule L 2 ( t ). {Polinômio de Lagrange} Onde t é igual ao instante 3:42 h. número de horas (x)01234 número de bactérias por volume unitário (y)

5 a) Calcule P 1 (3,7). {Interpolação Linear} número de horas (x)01234 número de bactérias por volume unitário (y)

6 b) Determine P 2 ( x ). {Interpolação Quadrática} número de horas (x)01234 número de bactérias por volume unitário (y)

7 b) Determine P 2 ( x ). {Interpolação Quadrática}

8 c) Calcule P 2 ( x ). {Interpolação Quadrática}

9 d) Calcule L 2 (3,7). {Polinômio de Lagrange} número de horas (x)01234 número de bactérias por volume unitário (y)

10 2)Seja f(x) da na forma: a) Escolher as abscissas dos pontos para calcular f (0,47) usando um polinômio de grau 2. b) Monte a tabela de diferenças dividas e obtenha f (0,47) usando um polinômio de grau 2 na forma de Newton. x 0,20,340,40,520,6 f( x )0,160,220,270,290,32

11 a) Escolher as abscissas dos pontos para calcular f (0,47) usando um polinômio de grau 2 Deve-se escolher 3 pontos de interpolação. Como 0,47 (0,4; 0,52), dois pontos deverão ser 0,4 e 0,52. O outro pode ser tanto 0,34 quanto 0,6 pois:

12 b) Monte a tabela de diferenças dividas e obtenha f (0,47) usando um polinômio de grau 2 na forma de Newton. 00,200,16 0,4286 2, , ,340,22 0,8333-3, , ,400,27 0,1667 1, ,520,29 0, ,600,32

13 Se forem escolhidos x 0 = 0,34, x 1 = 0,4, e x 2 = 0,52 então: 00,200,16 0,4286 2, , ,340,22 0,8333-3, , ,400,27 0,1667 1, ,520,29 0, ,600,32

14 Se forem escolhidos x 0 = 0,4, x 1 = 0,52 e x 2 = 0,6 então: 00,200,16 0,4286 2, , ,340,22 0,8333-3, , ,400,27 0,1667 1, ,520,29 0, ,600,32


Carregar ppt "E XERCÍCIOS Interpolação. 1)O número de bactérias, por unidade de volume, existente em uma cultura após x horas é apresentado na tabela: a) Calcule P."

Apresentações semelhantes


Anúncios Google