Distância entre dois pontos no plano

Slides:



Advertisements
Apresentações semelhantes
Pontos notáveis em um triângulo
Advertisements

Inversor Trifásicos com Três Pernas
Paralelogramos.
Prof. MSc. Eng. Houari Cobas Gomez
Perímetros e Áreas de Figuras Planas
VETORES.
3.º Ciclo do Ensino Básico 8.º ANO
Equação de uma circunferência
A pirâmide e suas formas
Estudo da reta.
Estudo dos triângulos.
Equação de um lugar geométrico (LG)
COLÉGIO MARISTA SÃO LUÍS
COLÉGIO MARISTA SÃO LUÍS
 Revisão 02 Geometria Analítica Conceitos Básicos Prof. PH
Semelhança de Figuras.
Baricentro.
CIRCUNFERÊNCIAS E ÂNGULOS
Triângulos Prof. Ilizete
O que você deve saber sobre
O que você deve saber sobre
A pirâmide e suas formas
FIGURAS SEMELHANTES Prof. Alexandre Lima.
Custo de transportar C = Custo do transporte V = Volume transportado
Teorema de Tales. Teorema de Tales Feixe de Paralelas Transversal.
T E M A Â N G U L O S E T R I Â N G U L O S.
Elaborado por Mirian Batista
Disciplina: Geometria Professor: Mauri Cunha do Nascimento
CONSTRUÇÃO DE TRIÂNGULOS
A DIVISÃO DE UM SEGMENTO A ÁRVORE DAS DOBRADURAS E
Geometria Euclidiana revisitada
Aula de Matemática TRIÂNGULOS Razão de semelhança
O paralelogramo ABCD da figura tem 18cm de perímetro e os segmentos CM e DM estão contidos nas bissetrizes dos ângulos Ĉ e Ď. A medida de AD é a) 3cm b)
Relações Métricas no Triângulo (Δ) Retângulo.
GEOMETRIA ANALÍTICA.
3.º Ciclo do Ensino Básico 8.º ANO
Corda é um segmento de reta que une dois pontos da circunferência
Determinação da Latitude e da Declinação
LISTA DE EXERCÍCIOS – TEOREMA DE PITÁGORAS / POLÍGONOS
O produto das dízimas periódicas 0,1666. E 0,666
Resolução comentada Fuvest
CONHEÇA HIDROLÂNDIA - UIBAÍ
(IBMEC-SP) Sejam a, b, g, l e q as medidas em graus dos ângulos BAC, ABC, CDF, CEF e DFE da figura, respectivamente. A soma a + b + g + l + q é igual a:
Aula II – Ponto Prof. Zé Roque
SEGMENTOS NOTÁVEIS NO TRIÂNGULO
MÁRCIA CONTE BOA AULA.
Matemática e suas Tecnologias – Matemática
GEOMETRIA ANALÍTICA.
Por Ornisandro José Pires Domingues
CONHEÇA HIDROLÂNDIA - UIBAÍ
ÂNGULOS 1) OPERAÇÃO COM ÂNGULOS 38o 29’ 51’’ + 15o 45’ 24’’
REVISÃO P1.
Elementos de um triângulo retângulo
Ciências da Natureza - Matemática
Semelhança de triângulos
Professor : Neilton Satel
PROPRIEDADES.
Prof.: Luciano Soares Pedroso
CONHEÇA HIDROLÂNDIA - UIBAÍ
Pontos notáveis do triângulo Triângulo isósceles e equilátero
Geometria Analítica Professor Neilton.
Calculo da altura da Pirâmide de Quéops
ESTUDOS DOS TRIÂNGULOS
Mediatriz de um segmento de comprimento definido
MATEMATICA E SUAS TECNOLOGIAS
1° aulão de Matemática RUMO À UNIVERSIDADE EU POSSO, EU CHEGO LÁ
GEOMETRIA PLANA TEOREMA DE TALES
Área do Losango L L A = d1 . d2 2 d2 L L d1.
E.E. Dona Antônia Valadares
Teorema de Tales Razão de segmentos
Transcrição da apresentação:

Distância entre dois pontos no plano

Obter a distância entre os pontos A(xA, yA) e B(xB, yB) no plano xOy. Vamos aplicar o teorema de Pitágoras no triângulo ABC. yA (AB)2 = (BC)2 + (AC)2 B C yB (AB)2 = |xB – xA|2 + |yB – yA|2 x xA xB BC = |xB – xA| AC = |yB – yA|

Exemplo Calcule o perímetro do triângulo de vértices A(2, 0), B(–2, –3) e C(–1, 4). y C 4 A –2 2 x –3 B

Exemplo Determinar o ponto da 2.ª bissetriz que é eqüidistante de A(1, 2) e B(–4, –3). y P(k,–k) A 2 Se P é eqüidistante de A e B, deve ser –4 x 1 PA = PB –1 B

Ponto médio de um segmento

Na reta real, marcamos os pontos A(–2) e B(8) Na reta real, marcamos os pontos A(–2) e B(8). Se M(k) é ponto médio do segmento AB, quanto vale k? A M B –2 k 8 Se M é ponto médio, AM = MB, logo k – (–2) = 8 – k ⇒ k + 2 = 8 – k ⇒ 2k = 6 ⇒ k = 3 ⇒ M(3)

Caso geral. Na figura a seguir, M(xM) é ponto médio do segmento de extremos A(xA) e B(xB). A M B xA xM xB M é ponto médio de AB ⇒ AM = MB xM – xA = xB – xM ⇒ 2 xM = xA + xB xM = xA + xB 2 ⇒

Quando o segmento AB está contido no plano xOy, o raciocínio é semelhante. Se M é ponto médio de AB, A yA No eixo x, xM é ponto médio do segmento de extremos xA e xB. No eixo y, yM é ponto médio do segmento de etremos yA e yB. M yM B yB x xA xM xB xM = xA + xB 2 yM = yA + yB e

Exemplo Achar o ponto médio do segmento de extremos A(5, –4) e B(–3, 8). 5 + (–3) xM = = 1 2 ⇒ M( 1, 2) –4 + 8 yM = = 2 2

Exemplo Encontrar o ponto simétrico de P(1, –1) em relação ao ponto Q(–2, 3). R(a, b) Q(–2, 3) P(1, –1) a + 1 –2 = ⇒ a + 1 = – 4 ⇒ a = – 5 2 ⇒ R (–5, 7) b – 1 3 = ⇒ b – 1 = 6 ⇒ b = 7 2

Exemplo Obter o ponto P que divide o segmento AB com A(1, 3) e B(8, 17) na razão AP PB 2 5 = AP 2 B(8, 17) = PB 5 xP – xA 2 a – 1 2 ⇒ = ⇒ = xB – xP 5 8 – a 5 P(a, b) ⇒ 5(a – 1) = 2(8 – a) ⇒ 5a – 5 = 16 – 2a ⇒ 7a = 21 ⇒ a = 3 A(1, 3)

Exemplo Obter o ponto P que divide o segmento AB com A(1, 3) e B(8, 17) na razão AP PB 2 5 = AP 2 B(8, 17) = PB 5 yP – yA 2 b – 3 2 ⇒ = ⇒ = yB – yP 5 17 – b 5 P(a, b) ⇒ 5(b – 3) = 2(17 – b) ⇒ 5b – 15 = 34 – 2b ⇒ 7b = 49 A(1, 3) ⇒ b = 7 P(3, 7)

Área de um triângulo

Na figura, os pontos não-alinhados A(2, 1), B(6, 3) e C(4, 5) são os vértices de um triângulo. x y 4 1 A B C 2 6 3 5 Como podemos calcular a área desse triângulo, a partir das coordenadas de seus vértices?

Na figura, os pontos não-alinhados A(2, 1), B(6, 3) e C(4, 5) são os vértices de um triângulo. AT = AMNP – (AT1 + AT2 + AT3) y AMNP = AM . AP = 4 . 4 = 16 P C N 5 ② ① AT1 = (CP . AP)/2 = (4 . 2)/2 = 4 B 3 AT2 = (CN . BN)/2 = (2 . 2)/2 = 2 ③ A M 1 AT3 = (AM . BM)/2 = (4 . 2)/2 = 4 2 4 6 x AT = 16 – (4 + 2 + 4) AT = 6

Na figura, os pontos não-alinhados A(2, 1), B(6, 3) e C(4, 5) são os vértices de um triângulo. y 6 3 1 6 3 P C N 5 4 5 1 4 5 ② ① B 3 –12 –10 –6 +6 +4 +30 ③ A M 1 D = – 28 + 40 = 12 2 4 6 x |D| |12| Área = = = 6 2 2

Área de um triângulo Se A(xA, yA), B(xB, yB) e C(xC, yC) são os vértices de um triângulo, podemos calcular sua área assim: Calculamos o seguinte determinante, a partir das coordenadas dos vértices. xA yA 1 xB yB xC yC D = A área A do triângulo é metade do módulo desse determinante. A = |D| 2