Modelagem de Pequeno Sinal para Baixas e Médias Freqüências

Slides:



Advertisements
Apresentações semelhantes
Transistor Bipolar E=Emissor B=Base C=Coletor
Advertisements

Comportamento de um transistor MOS - NMOS
Amostragem/Reconstrução
Análise de Resposta em Freqüência Introdução. 8. 2
TIPOS DE CORRENTE ELÉCTRICA
TIPOS DE CORRENTE ELÉTRICA
GERADOR SÍNCRONO Geradores síncronos ou alternadores são máquinas síncronas usadas para converter potência mecânica em potência elétrica ASPECTOS CONSTRUTIVOS.
MÁQUINAS ELÉTRICAS Máquina de Corrente Contínua - MOTOR DC
MÁQUINAS ELÉTRICAS Máquina de Corrente Contínua - GERADOR DC
Sinais e Sistemas – Capítulo 4
Sinais e Sistemas – Capítulo 3
Modelos no Domínio do Tempo de Sistemas LTI Contínuos
ELETROSTÁTICA parte 2.
12 Modelos doTransistor MOS Concepção de Circuitos Integrados
CORRENTE E RESISTENCIA ELÉTRICA
IE733 – Prof. Jacobus Cap. 5 Transistores MOS com canal implantado.
IE733 – Prof. Jacobus 13 a Aula Cap. 4 A Estrutura MOS de Quatro Terminais (parte 3)
IE733 – Prof. Jacobus 9 a Aula Cap. 3 A Estrutura MOS de Três Terminais (parte 2)
IE733 – Prof. Jacobus 11a Aula Cap
IE733 – Prof. Jacobus 12 a Aula Cap. 4 A Estrutura MOS de Quatro Terminais (parte 2)
9. Modelos de Alta Freqüência Pequenos Sinais:
IE733 – Prof. Jacobus Cap. 5 Transistores MOS com canal implantado.
Modelagem de Pequeno Sinal para Baixas e Médias Freqüências
Efeitos em dispositivos de pequenas dimensões.
IE327 – Prof. Jacobus Cap. 8 Modelagem de Pequeno Sinal para Baixas e Médias Freqüências (parte 2)
9.3 – Modelos de Parâmetros-y
IE733 – Prof. Jacobus 7a Aula Cap. 2 A Estrutura MOS de Dois Terminais
IE 327 – Prof. Jacobus 18a Aula Cap
Conservação de Massa Esvaziamento de um tanque de água
Carlos Edson Flávio Jorge Luciano Rafael Welinton
Carlos Edson Flávio Jorge Luciano Rafael Welinton
Prof. Marcelo de Oliveira Rosa
Transistor de Efeito de Campo MOS (MOSFET) – Parte I
Diodos – Parte II Jadsonlee da Silva Sá jadsonlee. edu
Transistor Bipolar de Junção TBJ
Prof. Marcelo de Oliveira Rosa
Prof. Marcelo de Oliveira Rosa
Prof. Marcelo de Oliveira Rosa
TRANSFORMADORES.
Diodos – Parte III Jadsonlee da Silva Sá
Corrente e resistência
Transistor de Efeito de Campo MOS (MOSFET) – Parte II
Aula 8 By: Abraham Ortega Paredes
TRANSISTOR DE JUNÇÃO BIPOLAR
Trabalho e Potencial elétrico (Capítulo 3)
Introdução aos Sistemas Dinâmicos
Condução Elétrica e Térmica em Sólidos
AMPLIFICADORES OPERACIONAIS
Teoremas de rede Prof. Luis S. B. Marques MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE DE MOGI DAS CRUZES Curso: Engenharia Elétrica
Fatec SBC Automação Industrial Prof Rômulo
Para um sinal determinístico x(t), o espectro é bem definido: Se
TRANSISTORES BIPOLARES
 Impedância de entrada e impedância de saída  Ganho finito e tensões de saturação  Erros de polarização: tensão e desvio (offset) e correntes de polarização.
Física Experimental III – aula 2
Associação de Resistores
Germano Maioli Penello
Germano Maioli Penello
Prof. Nilton Cesar de Oliveira Borges
1 Eletrônica II Germano Maioli Penello Aula 05 II_ html.
1 Eletrônica II Germano Maioli Penello Aula 06 II _ html.
Germano Maioli Penello
Germano Maioli Penello
Germano Maioli Penello
Germano Maioli Penello
Germano Maioli Penello
Capítulo 3 - Circuitos e medições elétricas
ENERGIA CINÉTICA E TRABALHO
CIRCUITOS CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III Prof. Bruno Farias.
POTENCIAL ELÉTRICO Prof. Bruno Farias
Transcrição da apresentação:

Modelagem de Pequeno Sinal para Baixas e Médias Freqüências IE327 – Prof. Jacobus Cap. 8 Modelagem de Pequeno Sinal para Baixas e Médias Freqüências (parte 3)

8.5 Ruído: 8.5.1 Introdução: No capitulo anterior foi assumido que a Corrente de Dreno varia somente se uma ou mais tensões dos terminais varia com o tempo. Isto não é totalmente certo, um cuidadoso exame mostra que existem pequenas flutuações, referentes a Ruído, que está presente independentemente de tensões aplicadas nos terminais ou não.

Consideremos um transistor polarizado como indica na figura seguinte: A corrente total pode ser expressada como segue:

Trabalhando com Ruído, utilizamos: Média Quadrática: E a Raiz Média Quadrática:

Em medições de Ruído, o valor medido depende da largura de banda do instrumento de medida. Alguns instrumentos usam uma largura de banda estreita centrada em uma determinada freqüência “f”. A relação entre o valor medido (Potencia de Ruido) e a largura de banda, fazendo tender a zero a largura de banda, da origem a “Densidade de espectro de potência de corrente de ruído”. Unidade é: Amperes ao quadrado por Hertz ou também é utilizado a raiz quadrada do valor dando :

Para o caso de tensão de ruído, similarmente: O ruído total limitado entre duas freqüências será:

O bem conhecido exemplo de ruído em elementos é o “ruído térmico” ou “Johnson Noise” ou “Nyquist Noise” produzido por um resistor (a). Pode ser representado por um resistor ideal sem ruído com uma fonte de tensão de ruído em serie (b), ou com uma fonte de corrente de ruído em paralelo (c).

O ruído térmico é chamado de “ruído branco”, porque a sua “Densidade espectral de potência é constante em freqüência ate freqüências bem elevadas (acima de 1012 Hz) .

Curva típica de Densidade espectral de potência de ruído para a corrente de dreno. Pode-se ver dois regiões diferentes separadas por uma freqüência fc (corner frequency). Dependem da construção, geometria e polarização.

White Noise Altas freqüências Flicker Noise Baixas freqüências (1/f noise) Os efeitos dos dois tipos de ruido podem ser considerados separadamente, é o ruido total será a soma das médias quadráticas. O terceiro termo é zero

Ruído Branco: Inversão forte: Ruído Térmico Cap. 4 Sec 4.5.1 Necessitamos a expressão da resistência

Para estudar o ruído na corrente de dreno faremos uma consideração fictícia: Suponhamos uma fonte de tensão de complemento e valor muito pequeno em x1. 

Consideremos dois transistores com complemento de canal x1 é L-x1 A corrente de dreno sofrerá uma variação se v0

Nos consideramos que v é DC, mas o resultado pode ser considerado mesmo que v varie com t, sempre que a variação seja tão pequena que possa ser considerado o comportamento “Quase- estático”

Podemos remover a bateria e considerar a tensão de ruído térmico no lugar VCB(x1) é praticamente constante para um v1 muito pequeno, portanto o valor médio quadrático de it será: Substituindo pela relação 8.5.11

Integrando obtemos A integral é a carga total da camada de inversão e dividendo por B obtemos a densidade espectral de potência. Esta expressão é válida para qualquer modelo. Particularmente para QI da equação 7.4.14 teremos:

Onde  tem sido definido em 4.5.38 Em condições de não saturação com VDS = 0 =1 A parte entre parênteses de 8.2.22 é a condutancia de pequeno sinal fonte-dreno. Concorda plenamente com a expressão já vista: Em saturação =0

A curva mostra Siw vs VDS Note que para um determinado VGS e VSB o ruído é máximo para VDS=0 Como podemos ver para uma determinada polarização a densidade espectral de potência não depende da freqüência, pelo menos para a faixa de freqüência onde o comportamento é Quase-estático

“Tensão de ruído de entrada equivalente” É definida como o ruído necessário na tensão entre a porta e a fonte, de um transistor hipoteticamente sem ruído para produzir a corrente de ruído correta. vn.eq it = gm.vn.eq Elevando ao quadrado e considerando uma largura de banda B e dividindo por B, nos obtemos a relação entre as densidades espectral de potências.

Este sinal é considerado em serie com o sinal de entrada e comparados para determinar a relação sinal ruído. Se VDS = 0 então gm=> 0 e Svw => infinito Isto implica em ruído infinito no canal que não é verdadeiro pois o produto gm2.Svw da o valor correto de Siw Outra forma de descrever o ruído é a: Resistência de ruído de entrada equivalente Uma resistência Rn que em serie na entrada do sinal produz o ruído térmico equivalente.

WEAK INVERSION: Usando as formulas 8.5.20 e 7.4.36 Usando as expressões de Q´I0 e Q´IL do cap 4 e da corrente 4.6.12: Substituindo na 8.5.20 e lembrando que t =kT/q

Shot Noise vs Thermal Noise Shot Noise: Fluxo produzido por o cruzamento dos portadores de uma barreira de potencial (tal como a da fonte para o canal). Densidade potência espectral = 2qI MODERATE INVERSION AND GENERAL MODELS Pode ser usada a 8.5.20 com o valor de Q´I obtido dos modelos. INDUCED GATE NOISE Flutuações randonicas do potencial no canal inducem na porta a traves da capacitancia do isolante um ruído que é desprezível para baixas e médias freqüências.

Flicker Noise: Este tipo de ruído tambem é chamado de “ruído 1/f” 1ª teoria: flutuação randonica do número de portadores no canal, as flutuações são causadas pela captura e liberação dos portadores pelo potencial de superficie na interface do Si-SiO2 . Podemos pensar numa modulação da tensão de Flatband da equação 2.2.6 do termo Q´0/C´ox ., isto é equivalente a uma tensão de ruído em serie com a porta e proporcional a (1/C´ox)2. Inversamente proporcional a área WL é a f.

Esta tensão de ruído está em serie com a porta e o efeito na corrente de dreno será: A 2ª teoria: Atribui o efeito á flutuações da mobilidade devido ás interações dos portadores com “lattice fluctuations” com base nesta teoria se chega:

Efeitos em “pequenas dimensões” Short channal effects : velocidade de saturação High electric field : hot carrier Pequeno WL (menor que 1 um2) RTS: Random Telegraph Signals

Modelo de Circuito Equivalente Acrescentando ao modelo de pequenos sinais as fontes de ruído temos: