A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Tratamento de Dados Desbalanceados Sérgio Queiroz Adaptado dos slides do Prof. Ricardo Prudêncio.

Apresentações semelhantes


Apresentação em tema: "Tratamento de Dados Desbalanceados Sérgio Queiroz Adaptado dos slides do Prof. Ricardo Prudêncio."— Transcrição da apresentação:

1 Tratamento de Dados Desbalanceados Sérgio Queiroz Adaptado dos slides do Prof. Ricardo Prudêncio

2 Introdução É comum nos depararmos com problemas de classificação com dados desbalanceados – I.e., Presença de classes majoritárias com freqüência muito maior que as outras classes minoritárias Desbalanceamento de classes pode ser prejudicial dependendo do problema e algoritmo

3 Desbalanceamento de Dados Conseqüência: – Maior tendência para a responder bem para as classes majoritárias em detrimento das minoritárias – Entretanto, em muitos casos, o que importa é ter um bom desempenho para as classes minoritárias!!! Ver exemplos no próximo slide

4 Desbalanceamento de Dados Exemplo: Detecção de Fraude – Menos de 1% das transações de cartão de crédito são fraudes – Em um conjunto de exemplos relacionados a transações, teremos: 99% dos exemplos para a classe negativa (não-fraude) 1% dos exemplos para a classe positiva (fraude)

5 Desbalanceamento de Dados Exemplo: Detecção de Fraude – Classificadores terão uma tendência a dar respostas negativas para transações com fraude I.e. Alto número de falsos negativos – Problema: o custo de um falso negativo é muito maior que o custo de um falso positivo Falso negativo: fraude que não foi detectada em tempo – I.e., prejuízo a operadora de cartão Falso positivo: transação normal bloqueada – I.e., aborrecimento para o usuário do cartão

6 Desbalanceamento de Dados Exemplo: Diagnóstico Médico – Pacientes doentes são em geral menos comuns que pacientes saudáveis – No diagnóstico médico, novamente a classe positiva ( dos pacientes doentes) tem uma freqüência muito menor que a classe negativa (pacientes saudáveis)

7 Desbalanceamento de Dados Exemplo: Diagnóstico Médico – Classificadores terão uma tendência a classificar doentes reais como supostamente saudáveis Novamente, alto número de falsos negativos – Conseqüência : Diagnóstico tardio e dano para o paciente

8 Desbalanceamento de Dados Observações importantes: – Taxas globais de precisão não são úteis nesses contextos Use Área Under ROC Curve (AUC) – Processo de construção dos classificadores requer adaptações para evitar um viés para as classes majoritárias

9 (

10 Revisão: ROC Curves Exemplo: Diagnóstico de doenças usando um teste Doença presenteDoença ausente Teste positivoPositivos verdadeiros (TP) Falsos positivos (FP) Teste negativoFalsos negativos (FN) Negativos verdadeiros (TN) Esta seção de revisão sobre ROC Curves foi baseada no material disponível em: elaborado por Thomas G. Tape da University of Nebraska Medical Center

11 Revisão: ROC Curves Doença presenteDoença ausente Teste positivoPositivos verdadeiros (TP) Falsos positivos (FP) Teste negativoFalsos negativos (FN) Negativos verdadeiros (TN) Definições: Sensibilidade do teste: proporção de pacientes com a doença que testam positivo. Em notação de probabilidade: P(T+|D+) = TP / (TP + FN). Em classificação chamamos de RECALL. Especificidade do teste: proporção de pacientes sem doença com teste negativo. Em notação de probabilidade: P (T-| D-) = TN / (TN + FP). Probabilidade pré-teste: probabilidade estimada da doença antes do teste ser feito. É a mesma coisa que a probabilidade a priori e é frequentemente estimada. Se uma determinada população de pacientes está sendo avaliada, a probabilidade pré-teste é igual à prevalência da doença na população. É a proporção do total de pacientes que têm a doença. Na notação de probabilidade: P (D +) = (TP + FN) / (TP + FP + TN + FN).

12 Revisão: ROC Curves Doença presenteDoença ausente Teste positivoPositivos verdadeiros (TP) Falsos positivos (FP) Teste negativoFalsos negativos (FN) Negativos verdadeiros (TN) Definições: Sensibilidade do teste: proporção de pacientes com a doença que testam positivo. Em notação de probabilidade: P(T+|D+) = TP / (TP + FN). Em classificação chamamos de RECALL. Especificidade do teste: proporção de pacientes sem doença com teste negativo. Em notação de probabilidade: P (T-| D-) = TN / (TN + FP). Probabilidade pré-teste: probabilidade estimada da doença antes do teste ser feito. É a mesma coisa que a probabilidade a priori e é frequentemente estimada. Se uma determinada população de pacientes está sendo avaliada, a probabilidade pré-teste é igual à prevalência da doença na população. É a proporção do total de pacientes que têm a doença. Na notação de probabilidade: P (D +) = (TP + FN) / (TP + FP + TN + FN). valor preditivo do teste Sensibilidade e especificidade descrevem o quão bem o teste discrimina entre pacientes com e sem doença. Elas abordam uma questão diferente do que queremos responder ao avaliar um paciente, no entanto. O que geralmente queremos saber é: dado um determinado resultado do teste, qual é a probabilidade de doença? Este é o valor preditivo do teste.

13 Revisão: ROC Curves Doença presenteDoença ausente Teste positivoPositivos verdadeiros (TP) Falsos positivos (FP) Teste negativoFalsos negativos (FN) Negativos verdadeiros (TN) Valor preditivo do teste: Valor preditivo de um teste positivo: é a proporção de pacientes com testes positivos que têm a doença. Em notação de probabilidade: P(D + | T +) = TP / (TP + FP). Esta é a mesma coisa que a probabilidade pós-teste da doença dado um teste positivo. Ele mede o quão bem o teste indica a doença. Em classificação chamamos isso de PRECISÃO Valor preditivo de um teste negativo: é a proporção de pacientes com testes negativos que não têm a doença. Em notação de probabilidade: P(D-| T-) = TN / (TN + FN). Ele mede o quão bem o teste descarta a doença. Note que isto não é o mesmo que o pós-teste de probabilidade da doença a um teste negativo, que é um menos o valor preditivo de um teste negativo.

14 Índices Fonte: Wikipedia

15 Revisão: ROC Curves A sensibilidade e especificidade dependem da definição do que constitui um teste anormal. As distribuições dos valores para o teste dos indivíduos de uma classe ou outra normalmente se sobrepõem.

16 Revisão: ROC Curves Exemplo real: detecção de hipotireoidismo com teste T4. Hypothyroid: hipotireoidismo Euthyroid: normal

17 Revisão: ROC Curves 5 ou menos Suponha que os pacientes com valores de T4 de 5 ou menos sejam considerados com hipotiroidismo.

18 Revisão: ROC Curves 7 ou menos Sejamos menos exigentes com o T4 considerando agora que 7 ou menos sejam considerados com hipotiroidismo.

19 Revisão: ROC Curves 9 ou menos Movendo mais uma vez: 9 ou menos considerados com hipotiroidismo.

20 Tabelando os valores Observe que você pode melhorar a sensibilidade, movendo a ponto de corte para um valor mais elevado de T4 - ou seja, você pode tornar o critério para um teste positivo menos rigoroso. Você pode melhorar a especificidade, movendo o ponto de corte para um valor mais baixo de T4 - ou seja, você pode tornar o critério para um teste positivo mais estrito. Assim, há um equilíbrio entre sensibilidade e especificidade. Você pode alterar a definição de um teste positivo para melhorar um, mas o outro vai piorar.

21 Curvas ROC: Receiver Operating Characteristic Taxa de verdadeiros positivos (sensibilidade) x Taxa de falsos positivos

22 Curvas ROC Uma curva ROC demonstra várias coisas: – Ela mostra o equilíbrio entre sensibilidade e especificidade (qualquer aumento na sensibilidade será acompanhada por uma diminuição na especificidade). – Quanto mais próxima a curva segue a borda esquerda e, em seguida, a borda superior do espaço ROC, mais preciso será o teste. – Quanto mais perto a curva chega de a 45 graus diagonal do espaço ROC, menos preciso o teste. – A inclinação da linha tangente em um ponto de corte dá a razão de verossimilhança (LR) para que o valor do teste. Você pode verificar isso no gráfico acima. Lembre-se que o LR para de T4 9 é de 0,2. Isto corresponde à porção de extremidade direita, quase horizontal da curva. – A área sob a curva é uma medida do poder de discriminação.

23 Área sob curva ROC Uma área 1 representa um teste perfeito; uma área de 0,5 representa um teste inútil. Um guia geral para classificar a precisão de um teste de diagnóstico é o sistema de notas acadêmicas tradicional: – 0,90-1 = excelente (A) – 0,80-0,90 = bom (B) – 0,70-0,80 = razoável (C) – 0,60-0,70 = pobre (D) – 0,50-0,60 = ruim (F)

24 )

25 Voltando ao Desbalanceamento de Dados... Observações importantes: – Diferença entre as freqüências de classes não diz tudo a respeito de um problema – Outros fatores são importantes Separação linear das classes Existência de sub-conceitos nas classes – I.e. problemas moderadamente desbalanceados podem ser muito difíceis e; – Problemas fortemente desbalanceados podem não ser tão difíceis assim.

26 Abordagens para Tratamento de Dados Desbalanceados Resampling aleatório: – Reamostragem dos exemplos de treinamento de forma a gerar conjuntos balanceados – Undersampling Reduzir número de exemplos da classe majoritária Pode acarretar em perda de informação – Oversampling Replicar exemplos da classe minoritária Se feito aleatoriamente, pode gerar overfitting

27 Abordagens para Tratamento de Dados Desbalanceados SMOTE (Chawla et al., 2002) – Oversampling usando exemplos sintéticos da classe minoritária – Exemplos sintéticos extraídos ao longo dos segmentos que unem vizinhos mais próximos da classe minoritária One-side-selection (Kubat & Matwin, 1997) – Undersampling de exemplos redundantes da classe majoritária

28 Abordagens para Tratamento de Dados Desbalanceados Wilsons editing (Barandela et al., 2004) – Usa kNN para classificar instâncias da classe majoritária e exclui as classificadas erroneamente Cluster-based oversampling (Jo & Japkowicz, 2004) – Realizam cluster dos exemplos e replicam exemplos dos clusters mais desbalanceados

29 Abordagens para Tratamento de Dados Desbalanceados Comparação entre métodos – Undersampling aleatório tem se mostrado superior a oversampling (Chawla et al. 2002) (Hulse et al. 2007) – Entretanto melhor método de sampling depende do algoritmo sendo utilizado e da métrica de avaliação (Hulse et al. 2007)

30 Abordagens para Tratamento de Dados Desbalanceados Cost-Sensitive Learning – Introdução de custos no processo de aprendizado – Exemplo: Custo Total = FP*C FP + FN*C FN – Adaptação dos algoritmos para tratamento de dados desbalanceados

31 Abordagens para Tratamento de Dados Desbalanceados Cost-Sensitive Learning vs. Sampling (Weiss et al. 2007) – Nem todos os algoritmos têm versões que lidam com custos e nem sempre é trivial definir custos – Undersampling seria interessante por diminuir o tempo de aprendizado

32 Considerações finais Em geral, conjuntos de dados tem algum grau de desbalanceamento das classes Desbalanceamento pode ser um problema difícil dependendo da complexidade das classes Conjuntos desbalanceados podem ser lidados com técnicas de amostragem ou introduzindo custos diretamente – Não há o melhor método


Carregar ppt "Tratamento de Dados Desbalanceados Sérgio Queiroz Adaptado dos slides do Prof. Ricardo Prudêncio."

Apresentações semelhantes


Anúncios Google