A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Capítulo 17 – Oscilações 17.1 – Sistemas oscilantes Sistemas oscilantes estão entre os mais recorrentes e importantes de toda a Física Vibrações moleculares.

Apresentações semelhantes


Apresentação em tema: "Capítulo 17 – Oscilações 17.1 – Sistemas oscilantes Sistemas oscilantes estão entre os mais recorrentes e importantes de toda a Física Vibrações moleculares."— Transcrição da apresentação:

1 Capítulo 17 – Oscilações 17.1 – Sistemas oscilantes Sistemas oscilantes estão entre os mais recorrentes e importantes de toda a Física Vibrações moleculares Circuitos elétricos Construções

2 17.2 – Oscilador harmônico simples Sistema massa-mola: Lei de Hooke Robert Hooke ( ) Força restauradora: Constante elástica Unidades S.I.: N/m Kit LADIF: massa e mola

3 2a. Lei: Equação diferencial ordinária linear homogênea de 2a. ordem Propriedades (verifique!): (A) Solução geral depende de duas constantes arbitrárias, determinadas pelas condições iniciais (exemplo: posição inicial e velocidade inicial) (B) Se x 1 (t) é solução, então ax 1 (t) também é solução, com a constante. (C) Se x 1 (t) e x 2 (t) são soluções, então qualquer combinação linear ax 1 (t)+ bx 2 (t) também é solução. (D) Se x 1 (t) e x 2 (t) são soluções linearmente independentes, então x(t) = ax 1 (t)+ bx 2 (t) é a solução geral. Mas como encontrar x 1 (t) e x 2 (t) ?

4 MIT 8.01 Lec 10, 11min20s: Qual função que, ao ser derivada duas vezes, é igual a ela mesma vezes uma constante?

5 Vamos tentar: É solução de com Vamos tentar: Também é solução de com Solução geral:

6 Vamos mostrar que a solução geral é equivalente a, com relações exatas entre as constantes e (demonstração no quadro-negro)

7 17.3 – Movimento harmônico simples : descreve o movimento harmônico simples x(t) t x m : Amplitude, quantidade positiva, massa oscila entre as posições x m e - x m Período (T ): intervalo de tempo depois do qual o movimento se repete

8 Cálculo do período : Note que: O período não depende da amplitude do movimento! Quanto maior a massa, maior o período (mais inércia) Quanto maior constante elástica, menor o período (mais força)

9 Freqüência: Freqüência angular: (depende apenas das constantes físicas do oscilador) Fase:Ângulo de fase:

10

11 Velocidade no MHS: Aceleração no MHS: Magnitude de v é máxima quando x=0 e vice-versa Diz-se que a fase da velocidade está deslocada por π/2 em relação à posição Curva v(t) está deslocada por T/4 em relação à curva x(t) a é máxima quando x é mínima e vice-versa Fase da aceleração está deslocada por π em relação à posição Curva a(t) está deslocada por T/2 em relação à curva x(t)

12

13 Para pensar:


Carregar ppt "Capítulo 17 – Oscilações 17.1 – Sistemas oscilantes Sistemas oscilantes estão entre os mais recorrentes e importantes de toda a Física Vibrações moleculares."

Apresentações semelhantes


Anúncios Google