A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Realimentação de estados Estimadores de estados (C. T. Chen, Capítulo 8) Sistemas Lineares.

Apresentações semelhantes


Apresentação em tema: "Realimentação de estados Estimadores de estados (C. T. Chen, Capítulo 8) Sistemas Lineares."— Transcrição da apresentação:

1 Realimentação de estados Estimadores de estados (C. T. Chen, Capítulo 8) Sistemas Lineares

2 Introdução Controlabilidade e observabilidade foram usadas nos dois capítulos precedentes para estudar a estrutura interna dos sistemas (descrição no espaço de estados) e estabelecer as relações entre as descrições interna e externa (função de transferência). Agora discutem-se suas implicações no projeto de sistemas de controle realimentados (feedback control systems). Os sistemas de controle podem ser formulados como na Figura a seguir, onde: – Planta e sinal de referência r(t) são dados – A entrada da planta u(t) é chamada sinal de atuação ou sinal de controle – y(t) é chamado saída da planta ou sinal controlado

3 Introdução Planta yur

4 Introdução Objetivo: projetar um sistema completo tal que a saída da planta siga o sinal de referência r(t) com o menor erro possível Dois tipos de controle: – Malha aberta – o sinal de atuação u(t) depende somente da referência r(t), sendo independente da saída da planta – Malha fechada ou controle por realimentação – o sinal de atuação depende do sinal de referência e da saída da planta Na prática, usa-se quase que exclusivamente o controle a malha fechada ou controle realimentado Este capítulo estuda projetos usando equações de estados. Projetos usando frações coprimas serão abordados no próximo capítulo São estudados sistemas lineares invariantes no tempo

5 Realimentação de Estados

6 Teorema 8.1

7

8

9 O que pode ser obtido via realimentação de estados? Vejamos um exemplo:

10 O exemplo mostrou que realimentação de estados pode ser usada para colocar os autovalores em qualquer posição. Mais ainda, os ganhos de realimentação são diretamente obtidos.

11

12

13

14

15

16

17

18

19

20

21 Localização dos autovalores

22 Procedimento para alocação de pólos

23

24

25

26

27

28

29

30 Regulação e seguimento Regulação: retornar à origem após uma perturbação (sinal de referência nulo) Seguimento: erro para uma entrada de referência não nula deve ser zero quando t (sinal de referência constante r(t)=a para todo t0) (seguimento assintótico de uma referência em degrau) Seguir uma entrada de referência r(t) não constante é denominado problema de servomecanismo.

31 O problema de regulação é resolvido via realimentação de estados: a realimentação de estados é usada para fazer (A-bk) estável com todos os autovalores dentro do setor representado na Figura 8.3.

32 Para seguimento de referência em degrau, é preciso um ganho feedforward p, tal que. Daí:

33 Em resumo: Dada a realização (A, b, c): -se (A,b) é controlável, pode-se introduzir realimentação de estados e alocar os autovalores de (A-bk) em qualquer posição desejada, e o sistema resultante cumprirá a regulação; -se (A,b) é controlável e c(sI-A) -1 b não tem zero na origem (s=0), após realimentação de estados é possível introduzir um ganho feedforward, e o sistema resultante é capaz de seguir qualquer referência em degrau.

34 Seguimento robusto e rejeição de perturbação ( Problema: seguir u e rejeitar w )

35 Realimentação integral de estados

36 Sistema aumentado Seja x a (t) a saída do integrador, uma variável de estado a mais. Então o sistema tem o vetor de estados aumentado [x x a ]. Da figura no slide anterior, tem-se que

37

38

39 A existência de um zero na origem cancelaria o polo na origem correspondente ao integrador, resultando em um sistema não controlável.

40

41 Realimentação integral de estados

42

43

44

45 Estabilização

46 Estimadores de estados Problemas em usar (8.39) O estado inicial tem que ser estimado e setado cada vez que se usar o estimador Se A tem autovalores com parte real positiva, qualquer erro entre o estado real e o estimado crescerá com o tempo.

47 Estimador (ou Observador) em malha fechada (ou Assintótico)

48

49

50 Observador de estados via equação de Lyapunov

51

52 Observador de ordem reduzida Um sistema observável pode ser colocado na forma Como y=x1, apenas (n-1) estados precisam ser estimados.

53 Observador de ordem reduzida usando Lyapunov

54 Justificativa

55

56 Realimentação usando estados estimados

57

58 Princípio da Separação

59

60 Realimentação de estados: caso multivariável

61 Projeto via equação de Lyapunov

62 Observador de estados: caso multivariável

63 Controlador resultante da realimentação de estados + observador de estados

64


Carregar ppt "Realimentação de estados Estimadores de estados (C. T. Chen, Capítulo 8) Sistemas Lineares."

Apresentações semelhantes


Anúncios Google