A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Lukasiewicz, Bivalência e Verofuncionalidade Samir Bezerra Gorsky CLE-UNICAMP Orientador: Prof. Dr. Walter Carnielli.

Apresentações semelhantes


Apresentação em tema: "Lukasiewicz, Bivalência e Verofuncionalidade Samir Bezerra Gorsky CLE-UNICAMP Orientador: Prof. Dr. Walter Carnielli."— Transcrição da apresentação:

1

2 Lukasiewicz, Bivalência e Verofuncionalidade Samir Bezerra Gorsky CLE-UNICAMP Orientador: Prof. Dr. Walter Carnielli

3 Resumo: É bem conhecida a questão da valoração de proposições sobre futuros contingentes tais como descreve Aristóteles no De Interpretatione IX, assim como também são bem conhecidas as lógicas n-valoradas de Lukasiewicz criadas para solucionar tal questão. Lukasiewicz trata dos futuros contingentes aristotélicos aplicando a noção de valores intermediários de verdade, tratamento este criticado por alguns autores. Contudo, um ponto falho em tais críticas é que o tratamento com valores intermediários devido a Lukasiewicz permite salvar a verofuncionalidade, perdida quando reduzimos tais lógicas a sistemas bivalorados.

4 A Batalha Naval Aristóteles. De Interpretatione IX (uma lógica com um terceiro valor). Aristóteles. De Interpretatione IX (uma lógica com um terceiro valor). Uma tentativa de solucionar um problema relacionado aos futuros contingentes. Uma tentativa de solucionar um problema relacionado aos futuros contingentes. Proposições devem corresponder a fatos. Proposições devem corresponder a fatos. Eventos situados no futuro possuem uma alternativa real e uma potencial em direções contrárias. Eventos situados no futuro possuem uma alternativa real e uma potencial em direções contrárias. A afirmação e a negação correspondentes a essa proposição terão o mesmo caráter. A afirmação e a negação correspondentes a essa proposição terão o mesmo caráter. Ambas poderão ser verdadeiras ou ambas poderão ser falsas, porém atualmente não podem possuir nenhum valor de verdade (verdadeiro ou falso). Ambas poderão ser verdadeiras ou ambas poderão ser falsas, porém atualmente não podem possuir nenhum valor de verdade (verdadeiro ou falso).

5 A Batalha Naval Aristóteles Argumenta que não podem valer, ao mesmo tempo, os seguintes casos: Aristóteles Argumenta que não podem valer, ao mesmo tempo, os seguintes casos: a) Haverá ou não haverá uma batalha naval amanhã é, agora, indeterminado. b) Já é definitivamente verdadeiro ou definitivamente falso que haverá uma batalha naval amanhã.

6 A Batalha Naval Embora nenhuma das partes da disjunção seja, agora, verdadeira ou falsa, o conjunto inteiro desta disjunção (haverá ou não haverá uma batalha naval amanhã) é desde já definitivamente verdadeiro. Embora nenhuma das partes da disjunção seja, agora, verdadeira ou falsa, o conjunto inteiro desta disjunção (haverá ou não haverá uma batalha naval amanhã) é desde já definitivamente verdadeiro.

7 A Batalha Naval Tratamento desta questão entre os pensadores medievais. Tratamento desta questão entre os pensadores medievais. Okham introduz um valor neutro que coexiste com proposições que possuem valor de verdade determinado (verdadeiro ou falso). Okham introduz um valor neutro que coexiste com proposições que possuem valor de verdade determinado (verdadeiro ou falso). Relação desta lógica tri-valorada e a omnisciência divina. Relação desta lógica tri-valorada e a omnisciência divina. Exitem proposições indeterminadas Existem questões para as quais Deus não pode,desde já, conhecer a sua resposta. Exitem proposições indeterminadas Existem questões para as quais Deus não pode,desde já, conhecer a sua resposta.

8 A Batalha Naval Considere as seguintes proposições: Considere as seguintes proposições: 1) X acontecerá 2) Deus sabe que X acontecerá (Deus sabe que 1))

9 A Batalha Naval 2) 1) ? 2) 1) ? Okham pensava que sim. Okham pensava que sim. O antecedente é falso quando o conseqüente é neutro. O antecedente é falso quando o conseqüente é neutro. (Usando a notação encontrada em [3]) (Usando a notação encontrada em [3]) C0½ = 1, assim como C01 = 1 2) 1) é verdadeira não importando que tipo de evento X possa ser. 2) 1) é verdadeira não importando que tipo de evento X possa ser. C00 = 1; C11 = 1 [Pois se 1) é V. Deus (sendo Deus) saberá que 1) ]. C00 = 1; C11 = 1 [Pois se 1) é V. Deus (sendo Deus) saberá que 1) ].

10 A Batalha Naval 1) 2)? 1) 2)? Se 1) é falso então 2) é falso Se 1) é falso então 2) é falso Se 1) é verdadeiro então 2) é verdadeiro Se 1) é verdadeiro então 2) é verdadeiro E se 1) é neutro? E se 1) é neutro? Daí 2) é falso e, portanto, 1) 2) é falso. Daí 2) é falso e, portanto, 1) 2) é falso. não vale ambos p e não-q não implica, em todos os casos, se p então q não vale ambos p e não-q não implica, em todos os casos, se p então q

11 Lukasiewicz O problema de se construir uma lógica verofuncional que nos permita trabalhar com proposições neutras como as que encontramos nos trabalhos aristotélicos foi atacado, de forma sistemática, em 1920 por Lukasiewicz. O problema de se construir uma lógica verofuncional que nos permita trabalhar com proposições neutras como as que encontramos nos trabalhos aristotélicos foi atacado, de forma sistemática, em 1920 por Lukasiewicz. Ele sugeriu que deveríamos considerar as seguintes matrizes: Ele sugeriu que deveríamos considerar as seguintes matrizes:

12 Lukasiewicz ~ 10 ½½ 01&1½011½0 ½½½0 0000

13 Lukasiewicz 1½0 11½0 ½11½ 0111V1½01111 ½1½½ 01½0

14 Lukasiewicz A partir dessas matrizes (p & q) é equivalente a: A partir dessas matrizes (p & q) é equivalente a: ~ (~p v ~q) ~ (~p v ~q) Podemos ainda definir (p q): Podemos ainda definir (p q): (p q) & (q p) (p q) & (q p) p v q não é, entretanto, definido como: p v q não é, entretanto, definido como: ~p q (no cálculo implicacional porém é definido como: (p q) p)

15 Lukasiewicz ~p é definido como: p ~p é definido como: p Muitas leis do cálculo proposicional deixam de valer de acordo com os significados dos conectivos dados pelas matrizes acima. Muitas leis do cálculo proposicional deixam de valer de acordo com os significados dos conectivos dados pelas matrizes acima. Por exemplo: (~p p) p Por exemplo: (~p p) p A lei do terceiro excluído: p v ~p A lei do terceiro excluído: p v ~p (suponha que p = ½) Daí temos uma divergência entre a lógica L3 de Lukasiewicz e o que é sugerido no De Interpretatione.

16 Lukasiewicz A verdade do terceiro excluído é devido ao fato de seus componentes serem contraditórios e não por causa dos seus valores de verdade. A verdade do terceiro excluído é devido ao fato de seus componentes serem contraditórios e não por causa dos seus valores de verdade. Existe portanto um elemento não-verofuncional no tratamento destas proposições. Existe portanto um elemento não-verofuncional no tratamento destas proposições. Prior [3] considera que o aparecimento da não- verofuncionalidade em tais proposições é devido a uma confusão com relação à diferenciação das duas seguintes sentenças: Prior [3] considera que o aparecimento da não- verofuncionalidade em tais proposições é devido a uma confusão com relação à diferenciação das duas seguintes sentenças:

17 Lukasiewicz i) Haverá ou não haverá uma batalha naval amanhã é verdadeira de acordo com regras verofuncionais, somente quando pelo menos uma das duas componentes for verdadeira. ii) Amanhã será o caso da seguinte sentença: há ou não há uma batalha naval

18 Lukasiewicz A sentença i), apesar de salvar a verofuncionalidade, não possui validade para todos os casos. (considerando o sistema tri- valorado de Lukasiewicz A sentença i), apesar de salvar a verofuncionalidade, não possui validade para todos os casos. (considerando o sistema tri- valorado de Lukasiewicz A sentença ii) não é verofuncional dado que o conectivo de disjunção é governado pelo operador não-verofuncional amanhã será o caso... (tal operador não aparece no sistema tri-valorado de Lukasiewicz) A sentença ii) não é verofuncional dado que o conectivo de disjunção é governado pelo operador não-verofuncional amanhã será o caso... (tal operador não aparece no sistema tri-valorado de Lukasiewicz)

19 Problema! Como tratar as proposições futuras em matéria contingente a partir de seus valores de verdade (inclusive o neutro: ½ ) e ainda manter as características lógicas básicas como por exemplo a verofuncionalidade?

20 Propostas: Para responder a essa questão analisaremos duas propostas diferentes: Para responder a essa questão analisaremos duas propostas diferentes: A proposta B A proposta B Critica os sistemas tri-valorados de Lukasiewicz e tenta uma solução a partir da temporalização da lógica. A proposta C A proposta C Defende que os sistemas tri-valorados de Lukasiewicz não são supérfluos e que portanto não devem ser descartados ao se tratar de lógicas contendo proposições futuras em matéria contingente.

21 A proposta B Bivalência: Bivalência: só o discurso no qual reside o verdadeiro e o falso é um discurso veritativo. (De Interpretatione, IV 16b33-17a7) O Princípio da bivalência desempenha um papel fundamental na tentativa de se refutar o determinismo lógico O Princípio da bivalência desempenha um papel fundamental na tentativa de se refutar o determinismo lógico

22 A proposta B Diodoro Vs Aristóteles Diodoro Vs Aristóteles Diodoro aceita o determinismo. Diodoro aceita o determinismo. Aristóteles não aceita o determinismo. Aristóteles não aceita o determinismo.

23 A proposta B Se atribuirmos à frase haverá uma batalha naval amanhã o valor 1, então certamente a batalha vai acontecer. Se atribuirmos 0, então certamente a batalha não vai acontecer. Se atribuirmos à frase haverá uma batalha naval amanhã o valor 1, então certamente a batalha vai acontecer. Se atribuirmos 0, então certamente a batalha não vai acontecer. Qualquer que seja o seu valor de verdade Qualquer que seja o seu valor de verdade (0 ou 1), o futuro estará fadado a acontecer em conformidade com este valor.

24 A proposta B Muitos interpretes consideram que Aristóteles não pode refutar o determinismo lógico sem limitar a validade irrestrita do princípio de bivalência. Muitos interpretes consideram que Aristóteles não pode refutar o determinismo lógico sem limitar a validade irrestrita do princípio de bivalência. A proposta B é uma tentativa de resolver o impasse causado pela ameaça do determinismo, porém sem abrir mão do princípio de bivalência irrestrito. A proposta B é uma tentativa de resolver o impasse causado pela ameaça do determinismo, porém sem abrir mão do princípio de bivalência irrestrito.

25 A proposta B Crisipo e Epicuro admitiam aimplicação do princípio de bivalência irrestrito ao necessitarismo universal. Crisipo e Epicuro admitiam aimplicação do princípio de bivalência irrestrito ao necessitarismo universal. Crisipo aceita o princípio sem restrição e portanto o necessitarismo. Crisipo aceita o princípio sem restrição e portanto o necessitarismo. Epicuro recusa o determinismo e daí nega a universalidade irrestrita do princípio. Epicuro recusa o determinismo e daí nega a universalidade irrestrita do princípio. (cf. [1] p 173)

26 A proposta B Podemos considerar duas etapas ordenadas das posições citadas acima. Podemos considerar duas etapas ordenadas das posições citadas acima. Primeiro: Vale a implicação do princípio de bivalência irrestrito ao necessitarismo lógico? Segundo: Vale o princípio de bivalência irrestrita?

27 A proposta B A maioria dos autores considerados neste trabalho estão de acordo com a resposta afirmativa à primeira questão, ou seja: A maioria dos autores considerados neste trabalho estão de acordo com a resposta afirmativa à primeira questão, ou seja: Princípio de bivalência irrestrito Necessitarismo lógico

28 A proposta B Questão: É possível refutar o argumento necessitarista contido no capítulo IX do Questão: É possível refutar o argumento necessitarista contido no capítulo IX do De Interpretatione sem restringir o princípio de bivalência? Deve-se compreender corretamente os princípios lógicos ontológicos e a concepção aristotélica de valor-de-verdade. Deve-se compreender corretamente os princípios lógicos ontológicos e a concepção aristotélica de valor-de-verdade. (cf. [1] p. 175)

29 A proposta B Veritas sequitur esse rerum Veritas sequitur esse rerum A mudança é logicamente possível (contrapondo os argumentos eleáticos) A mudança é logicamente possível (contrapondo os argumentos eleáticos) Conclusão: é preciso introduzir o tempo na formulação dos primeiros princípios Conclusão: é preciso introduzir o tempo na formulação dos primeiros princípios Sem tempo não há mudança Sem tempo não há mudança

30 A proposta B O verbo ser, flexionado como por exemplo na expressão X é verdadeiro ou falso, pode significar o tempo presente ou o presente omnitemporal. O verbo ser, flexionado como por exemplo na expressão X é verdadeiro ou falso, pode significar o tempo presente ou o presente omnitemporal. Para os defensores da proposta B, o princípio de bivalência deve ser tomado como irrestrito e portanto necessário. Para os defensores da proposta B, o princípio de bivalência deve ser tomado como irrestrito e portanto necessário.

31 A proposta B A formulação exata do princípio de bivalência torna-se, por conseguinte, algo como: A formulação exata do princípio de bivalência torna-se, por conseguinte, algo como: um enunciado é veritativo se, e somente se, ele é, foi ou/e será verdadeiro ou bem ele é, foi ou/e será falso. (A conjunção e se aplica aos enunciados necessários e a disjunção ou aos contingentes e ambos, a conjunção e a disjunção, não serão aqui vero-funcionais) (cf. [1] p. 177)

32 Comentários Se tomarmos a disjunção ou para os enunciados contingentes estes passarão a ser necessários. Se tomarmos a disjunção ou para os enunciados contingentes estes passarão a ser necessários. O problema não se define apenas sobre enunciados futuros mas sobre sua contingência (nem sempre temporalizada). Por exemplo: Qual o valor de verdade da sentença a camisa é verde? O problema não se define apenas sobre enunciados futuros mas sobre sua contingência (nem sempre temporalizada). Por exemplo: Qual o valor de verdade da sentença a camisa é verde? As sentenças continuam sem referência mesmo com a passagem do tempo (o que muda é o significado da sentença em uma certa data determinada) As sentenças continuam sem referência mesmo com a passagem do tempo (o que muda é o significado da sentença em uma certa data determinada) Se temporalizarmos os enunciados perderemos a verofuncionalidade. Se temporalizarmos os enunciados perderemos a verofuncionalidade.

33 A proposta C Roman Suszko (1970s) there are but two logical values, true and false. Roman Suszko (1970s) there are but two logical values, true and false. Wójcicki-Lindembaum: Mostra que qualquer lógica tarskiana tem uma semântica multi- valorada. Wójcicki-Lindembaum: Mostra que qualquer lógica tarskiana tem uma semântica multi- valorada. Suszko-daCosta-Scott: mostra que qualquer semântica multivalorada pode ser reduzida a uma semântica bi-valorada. Suszko-daCosta-Scott: mostra que qualquer semântica multivalorada pode ser reduzida a uma semântica bi-valorada. Por que trabalhar com lógicas multivaloradas? Por que trabalhar com lógicas multivaloradas?

34 A proposta C Porque precisamos de uma ponte (algumas vezes) entre a bi-valoração e a verofuncionalidade. (de um ponto de vista pragmático). Porque precisamos de uma ponte (algumas vezes) entre a bi-valoração e a verofuncionalidade. (de um ponto de vista pragmático). Os resultados redutivos de Suszko são não construtivos. Os resultados redutivos de Suszko são não construtivos. Existe uma maneira de se construir semânticas bi- valoradas para qualquer lógica que tenha uma semântica verofuncional finito-valorada e uma linguagem suficientemente expressiva. Existe uma maneira de se construir semânticas bi- valoradas para qualquer lógica que tenha uma semântica verofuncional finito-valorada e uma linguagem suficientemente expressiva. É indicada ainda uma maneira de se construir um sistema canônico adequado de seqüentes ou tableaux. É indicada ainda uma maneira de se construir um sistema canônico adequado de seqüentes ou tableaux.

35 Bibliografia [1] Balthazar Barbosa Filho (UFRGS/CNPq). Aristóteles e o princípio da Bivalência. Analytica, Vol. 9 n 1, [2] J.-Y. Beziau (ed.). Carlos Caleiro, Walter Carnielli, Marcelo Coniglio e João Marcos. Two's Company: The Humbug of Many Logical Values In Logica Universalis pp Birkhäuser Verlag Basel/Switzerland [3] Arthur Prior. Three-valued and Intuitionist Logic in Formal Logic. Claredon Press, Oxford 2 a ed


Carregar ppt "Lukasiewicz, Bivalência e Verofuncionalidade Samir Bezerra Gorsky CLE-UNICAMP Orientador: Prof. Dr. Walter Carnielli."

Apresentações semelhantes


Anúncios Google