A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 1.

Apresentações semelhantes


Apresentação em tema: "Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 1."— Transcrição da apresentação:

1 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 1

2 3.5.6 Método de Scheffé para a comparação de todos os contrastes. Scheffé (1953) propôs um método para comparar qualquer e todos os possíveis contrastes entre médias de tratamento. Em seu método, o erro tipo I é no máximo para qualquer das comparações possíveis. Suponha um conjunto de m contrastes das médias de tratamento. Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 2

3 3.5.6 Método de Scheffé para a comparação de todos os contrastes. Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 3 O procedimento de Scheffé também pode ser usado para construir intervalos de confiança para todos os contrastes possíveis entre as médias de tratamento. intervalos simultâneos tal que o nível de confiança conjunto é pelo menos 1-.

4 Exemplo Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 4

5 3.5.7 Comparação de pares de médias de tratamento Nesse caso poderíamos fazer Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 5 e usar Scheffé. Porém, nesse contexto, o método de Scheffé não é o mais sensível para tais comparações. Existem vários métodos para esse tipo de comparação. Veremos os dois mais populares.

6 Teste de Tukey Suponha uma ANOVA na qual a hipótese nula de médias iguais foi rejeitada e que deseja-se testar as hipóteses Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 6 Tukey (1953) propôs um procedimento para o qual o nível de significância global é exatamente, quando os tamanhos amostrais são iguais e, no máximo, quando os tamanhos são desiguais. Também é possível usar esse método para construir intervalos de confiança para as diferenças entre médias. Os intervalos têm nível de confiança conjunto de 100(1- )% no caso balanceado e pelo menos 100(1- )% no caso não balanceado.

7 Teste de Tukey para a comparação de pares de médias O procedimento de Tukey usa a estatística studentizada Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 7 Valores da distribuição da estatística q foram tabulados Para um experimento balanceado, o teste de Tukey rejeita a hipótese nula se

8 Teste de Tukey para a comparação de pares de médias Equivalentemente, podemos construir intervalos de confiança de 100(1- )% para todos os pares dados por Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 8 Quando as amostras são não balanceadas

9 Teste de Tukey para a comparação de pares de médias No R, há as função TukeyHSD e plot(TukeyHSD). Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 9 Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = dados$y ~ dados$rf) $`dados$rf` diff lwr upr p adj p180-p p200-p p220-p p200-p p220-p p220-p

10 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 10

11 Comparação de médias É possível obter um teste F global da ANOVA significativo e, ao comparar todos os pares de médias, concluirmos que as diferenças não são significativas. Essa situação pode ocorrer porque o teste F está considerando simultaneamente todos os contrastes possíveis envolvendo as médias de tratamento e não somente os pares. Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 11

12 Método de Fisher da menor diferença significante (mds) O método de Fisher da menor diferença significante para comparar todos os pares de média controla a taxa de erro para cada comparação individual, mas não a taxa de erro global do experimento. Esse procedimento usa a estatística t para testar a hipótese H 0 : i = j. Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 12 Supondo uma alternativa bilateral uma região crítica Para um teste de nível é:

13 Método de Fisher da menor diferença significativa (mds) A quantidade Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 13 é chamada menor diferença significativa. Se o experimento é balanceado Para usar um procedimento de Fisher, simplesmente comparamos a diferença observada em cada par com a correspondente MDS. O risco global pode ser consideravelmente inflacionado por esse método.

14 Que método usar? Não existe uma resposta e muitos estatísticos discordam sobre a utilidade dos vários procedimentos. Carmer e Swanson (1973) realizaram uym estudo de simulação de Monte Carlo de vários procedimentos de comparações múltiplas, incluindo procedimentos que não foram apresentados aqui. O método MDS é efetivo para detectar diferenças verdadeiras se aplicado somente após o teste F da ANOVA ter resultado significante a 5%, apesar do método não controlar a taxa de erro global. Muitos preferem o método de Tukey por controlar a taxa de erro global. Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 14

15 Comparações de médias de tratamento com um controle Se um dos tratamentos é um controle e se está interessado em comparar cada um dos outros a -1 tratamentos com o controle, apenas a -1 comparações são feitas. Um procedimento para fazer essas comparações foi desenvolvido por Dunnett (1964). Suponha que entre os tratamentos, o a -ésimo seja o controle e que Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 15 O procedimento é uma modificação do teste t usual.

16 Procedimento de Dunnett Para cada hipótese calcula-se a diferença Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 16 em que a constante d é obtida por meio de tabela apropriada. Aqui, é o nível conjunto dos a -1 testes. Quando comparamos tratamentos com um controle, uma boa estratégia é usar mais observações no controle do que nos demais. A razão n a /n de ve ser aproximadamente igual à raiz quadrada de a.

17 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery Sample Size Determination Text, Section 3.7, pg. 101 FAQ in designed experiments Answer depends on lots of things; including what type of experiment is being contemplated, how it will be conducted, resources, and desired sensitivity Sensitivity refers to the difference in means that the experimenter wishes to detect Generally, increasing the number of replications increases the sensitivity or it makes it easier to detect small differences in means

18 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 18 Sample Size Determination Fixed Effects Case Can choose the sample size to detect a specific difference in means and achieve desired values of type I and type II errors Type I error – reject H 0 when it is true ( ) Type II error – fail to reject H 0 when it is false ( ) Power = 1 - Operating characteristic curves plot against a parameter where

19 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 19 Sample Size Determination Fixed Effects Case---use of OC Curves The OC curves for the fixed effects model are in the Appendix, Table V A very common way to use these charts is to define a difference in two means D of interest, then the minimum value of is Typically work in term of the ratio of and try values of n until the desired power is achieved Most statistics software packages will perform power and sample size calculations – see page 103 There are some other methods discussed in the text

20 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 20 Power and sample size calculations from Minitab (Page 103)

21 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 21

22 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 22

23 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 23

24 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 24

25 Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 25

26 Sugestão de exercícios do capítulo 3 1,2,4,6,8 a 11, 16, 18 a 20


Carregar ppt "Chapter 3Design & Analysis of Experiments 7E 2009 Montgomery 1."

Apresentações semelhantes


Anúncios Google