A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Lógica Fuzzy Lógica Fuzzy Aplicada a Sistemas de Diagnóstico.

Apresentações semelhantes


Apresentação em tema: "Lógica Fuzzy Lógica Fuzzy Aplicada a Sistemas de Diagnóstico."— Transcrição da apresentação:

1 Lógica Fuzzy Lógica Fuzzy Aplicada a Sistemas de Diagnóstico

2 Lógica Fuzzy INTRODUÇÃO. A lógica fuzzy foi desenvolvida com base na teoria de conjuntos fuzzy, proposta em meados da década de 60 pelo professor de ciências da computação Lotfi A. Zadeh. Os métodos tradicionais de análise são voltados para o uso de técnicas numéricas. Em contraste, na maioria das vezes a razão humana envolve o uso de variáveis cujos valores são conjuntos nebulosos (ou fuzzy). Ocasionando a necessidade da introdução da variável lingüística, isto é, uma variável cujos valores são palavras em lugar de números. Lógica Fuzzy

3 FUNDAMENTOS DA LÓGICA FUZZY. Lógica Fuzzy A lógica clássica e bivalente. Alógica Fuzzy e multivalente. Lógica Fuzzy consegue suportar os modos de raciocínio que são aproximados ao invés de exatos. A Lógica Fuzzy, manuseia perfeitamente as expressões verbais, imprecisas, qualitativas e inerentes da comunicação humana.

4 Lógica Fuzzy A Lógica Fuzzy é bastante conveniente no que diz respeito a mapear um espaço de entradas para um espaço de saídas. A teoria dos Conjuntos difusos é baseada na idéia de que em diversas situações o importante é dispor de resultados com razoável precisão, mas principalmente dispor de resultados de grande significância. Precisão X Significância As palavras são variáveis linguísticas que traduzem informação qualitativa e são representadas pelos conjuntos Fuzzy.

5 Lógica Fuzzy CONJUNTOS FUZZY. O conceito de conjunto fuzzy é o principal pilar da teoria da lógica fuzzy. Um conjunto fuzzy é descrito por uma função que designa graus de pertinência igual a zero não pertence ao conjunto. Matematicamente defini-se um conjunto fuzzy da seguinte forma: Um conjunto fuzzy F pertencente a um universo U é caracterizado por uma função de pertinência F que assume valores no intervalo [0,1], isto é: F : U [0,1]

6 Lógica Fuzzy Um conjunto fuzzy F em U pode ser representado como um conjunto de pares ordenados de um elemento genérico u e seu grau de pertinência F na função: F = {(u, F (u)) / u U}

7 Lógica Fuzzy Igualdade. Se para todo x U, A (x) = B (x), então diz-se que o conjunto A é igual ao conjunto B. Subconjunto. Se para todo x U, A (x) B (x), então diz-se que o conjunto B contém o conjunto A, isto é, A B. Complementar. O conjunto completar de A, denotado por Ā, é definido pela seguinte função de pertinência:

8 Lógica Fuzzy União. A operação de união entre conjuntos fuzzy é semelhante à operação de união entre conjuntos clássicos, onde a união de dois conjuntos, por exemplo, A e B, seria dada pelo menor conjunto formado pelos elementos de ambos os conjuntos da união. A união fuzzy pode ser escrita em termos das funções de pertinências de A e B como: Intersecção. A operação de união entre conjuntos fuzzy é semelhante à operação de união entre conjuntos clássicos, onde a união de dois conjuntos, por exemplo, A e B, seria dada pelo menor conjunto formado pelos elementos de ambos os conjuntos da união. A união fuzzy pode ser escrita em termos das funções de pertinências de A e B como:

9 Lógica Fuzzy Normas S. São mapeamentos do tipo s: que combinam as funções de pertinências de dois conjuntos fuzzy A e B, resultando na função de pertinência do conjunto A B, isto é: Na prática, os mapeamentos normas-s mais utilizados são o operador máximo e a soma limitada.

10 Lógica Fuzzy Normas T. São mapeamentos do tipo t:, que combinam as funções de pertinências de dois conjuntos fuzzy A e B, resultando na função de pertinência generalizada do conjunto A B, isto é: Na prática, os mapeamentos normas-t mais utilizados são o operador mínimo e o produto algébrico.

11 Lógica Fuzzy VARIÁVEIS LINGÜÍSTICAS. Elementos simbólicos utilizados para descrever o conhecimento. Estrutura da variável Lingüísticas. Nome da variável; Predicados que identificam lingüisticamente, diferentes regiões do universo; Função de pertinência para cada conjunto fuzzy designado por um predicado; Universo.

12 Lógica Fuzzy Portanto, a variável lingüística pode ser caracterizada, por um quádrupla (x,T(x),Fi,U), onde x é o nome da variável; T(x) é um conjunto de predicados lingüísticos de x (esses termos estão associados a valores em U); Fi é a função de pertinência associada ao predicado i; e U é o universo.

13 Lógica Fuzzy SISTEMA FUZZY.

14 Lógica Fuzzy FUZZIFICADOR. Realiza o mapeamento do domínio de números reais (em geral discretos) para o domínio fuzzy.O fuzzificador também representa que há atribuição de valores lingüísticos, descrições vagas ou qualitativas, definidas por funções de pertinência às variáveis de entrada.

15 Lógica Fuzzy A seguir é apresentado três fuzzificadores mais usados, mostrando- se a fuzzificação de U para um conjunto. Fuzzificador Singleton Fuzzificador Gaussiano Fuzzificador Triangular

16 Lógica Fuzzy Regras Fuzzy Relaciona variáveis fuzzy, cada uma delas associada a um dos seus predicados. Se x é POUCO POSITIVO E y é ZERO ENTÃO z é POSITIVO GRANDE Inferência Fuzzy O procedimento de Inferência processa os dados fuzzy das entradas, junto com as regras, de modo a inferir as ações do sistema fuzzy. Isso é feito em 03 etapas distintas: Aplicação do Operador Fuzzy nos Antecedentes; Aplicação do método de Implicação e a aplicação do método de Agregação.

17 Lógica Fuzzy Aplicação do Operador Fuzzy nos Antecedentes. Quando o antecedente de uma regra tem mais de uma parte, um operador fuzzy deve ser aplicado para se obter apenas um número que represente o resultado do antecedente para a regra. Em uma regra existe dois tipos de conectivos: O conectivo AND representa genericamente um operador T- Norma ou operador de interseção e o conectivo OR representa o operador S - Norma ou operador União. Os métodos mais comuns, utilizados para definir os operadores T-Norma e S-Norma são Min (mínimo) e Max (máximo), respectivamente.

18 Lógica Fuzzy Método Mínimo e Máximo.

19 Lógica Fuzzy Método de Implicação. O conseqüente da regra fuzzy, é um conjunto fuzzy representado por uma função de pertinência pré definida na base de dados. A aplicação do método de implicação irá reformatar a função de pertinência do conseqüente usando uma função associada ao resultado do antecedente. A implicação deve ser aplicada em todas as regras da base de conhecimento. Os métodos ou funções de associação mais comuns de implicação são implementados pelas seguintes operações: 1. Operação Min (AND), onde o conjunto fuzzy é limitado no valor do resultado do antecedente. 2. Operação prod (produto), onde o conjunto fuzzy é multiplicado pelo valor do resultado do antecedente.

20 Lógica Fuzzy Uma vez que um sistema de inferência Fuzzy é baseado no teste de todas as regras da base de conhecimento, o resultado da aplicação do método de implicação de todas as regras deve ser combinado de maneira que uma decisão possa ser tomada. A agregação é o processo pelo qual os conjuntos fuzzy que representam as saídas de cada regra são combinados em um único conjunto Fuzzy. As operações mais utilizadas para agregação são: máximo (max) e soma (sum).

21 Lógica Fuzzy Na figura abaixo, três (03) regras são utilizadas juntas para mostrar como é aplicado o método de implicação e agregação.

22 Lógica Fuzzy A Implicação de Mandani –Define o uso das relações fuzzy utilizando os mapeamentos do tipo norma-t. Máquina de Inferência Fuzzy –Se x é A i e y é B i então z é C i –Ri = (Ai x Bi )x Ci, onde x representa uma determinada operação.

23 Lógica Fuzzy DEFUZZIFICADOR. Na defuzzificação, o valor da variável lingüística de saída inferida pelas regras fuzzy será traduzido num valor discreto. O objetivo é obter-se um único valor numérico discreto que melhor represente os valores fuzzy inferidos da variável lingüística da saída, ou seja a distribuição de possibilidades. Defuzificação Centro da Área ou Gravidade Defuzzificação Média dos Máximos Defuzzificação Maior dos Máximos

24 Lógica Fuzzy Na figura abaixo, é possível observar a diferença entre alguns dos métodos de defuzzificação: Método de defuzzificação: (a)Centro de Gravidade; (b)Média dos máximos e (c)Maior dos Máximos

25 Lógica Fuzzy O SISTEMA FUZZY CLASSIFICADOR O sistema Fuzzy idealizado no VIBROCOMP utilizou as seguintes especificações de operadores e métodos T- Norma ou AND. = Operador min (mínimo). Implicação. = Mandani Método min (mínimo). Agregação. = Método max (máximo). Defuzzificação. = Média do Máximo


Carregar ppt "Lógica Fuzzy Lógica Fuzzy Aplicada a Sistemas de Diagnóstico."

Apresentações semelhantes


Anúncios Google