A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Funções descrevem relações especiais entre 2 objetos: x e y=f(x); x é chamado de argumento da função f; e y, de imagem; Uma função é uma forma de referenciar.

Apresentações semelhantes


Apresentação em tema: "Funções descrevem relações especiais entre 2 objetos: x e y=f(x); x é chamado de argumento da função f; e y, de imagem; Uma função é uma forma de referenciar."— Transcrição da apresentação:

1

2 Funções descrevem relações especiais entre 2 objetos: x e y=f(x); x é chamado de argumento da função f; e y, de imagem; Uma função é uma forma de referenciar um único valor de y para cada argumento x; Uma função mapeia um conjunto, chamado de domínio (conjunto de valores de entrada), a outro conjunto, chamado contra-domínio ou imagem (conjunto de valores de saída); Cada elemento do domínio é associado a exatamente um elemento do contra-domínio; O conjunto de valores de y relacionados a algum x são chamados imagem da função; Lei da Função é a fórmula que origina, isto é que dá origem a função. Variáveis são em geral utilizadas para denotar objetos arbitrários de um dado domínio de aplicação, como por exemplo números reais, elas são representadas por letras, x, y, etc.

3 Representação Gráfica A representação de dados de uma tabela que representa valores de uma função, colocados no plano cartesiano é chamado de gráfico da função. O gráfico de uma função ajuda a analisar a variação das grandezas, uma dependendo da outra. Para construir o gráfico de uma função precisamos: Construir uma tabela com valores de x escolhidos convenientemente e seus respectivos correspondentes y; A cada par ordenado (x;y) da tabela, associar um ponto do plano determinado pelos eixos x (abcissa) e y (ordenada); Marcar um número suficiente de pontos até que seja possível esboçar o gráfico da função; Unir os pontos. consideraremos a variável x podendo assumir qualquer valor real possível

4 x Construindo um Gráfico Vamos tomar a função: y = 2x - 3 1º Construir uma tabela xY = 2x - 3YPar Ordenado -2Y=2(-2)-3=-4-3-7(-2 ; -7) Y=2(-1)-3=-2-3-5(-1 ; -5) 0Y=2(0)-3=0-3-3(0 ; -3) 1Y=2(1)-3=2-3(1 ; -1) 2Y=2(2)-3=4-31(2 ; 1) y

5 Reconhecendo se um Gráfico é ou não de uma Função Verificamos se o gráfico dado pertence ou não a uma função, se traçarmos uma reta paralela ao eixo y ou perpendicular ao eixo x e esta não encontrar o gráfico da função em mais que uma vez.

6 Função de 1º grau ou Função Afim Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante. Na função afim o x pode assumir qualquer valor real Veja alguns exemplos de funções polinomiais do 1º grau: f(x) = 5x - 3, onde a = 5 e b = - 3 f(x) = -2x - 7, onde a = -2 e b = - 7 f(x) = 11x, onde a = 11 e b = 0

7 O caso da palavra " linear". A função y = x + 1 é para alguns uma função linear, no sentido em que seu gráfico é uma e não no sentido da álgebra linear, é dizer uma função que preserva a estrutura vetorial. Em este caso a palavra linear tem duplo sentido. Para evitar essa ambigüidade outros preferem chamar a função linear - afim, ou função afim, ou função de primeiro grau, com o perigo de tender a uma sofisticação desmedida.

8 FUNÇÃO CONSTANTE Uma função é dita constante quando é do tipo f(x) = k, onde k não depende de x. Exemplos: a) f(x) = 5 b) f(x) = -3 Nota : o gráfico de uma função constante é uma reta paralela ao eixo dos x. Veja o gráfico abaixo: A cada elemento x associa o mesmo elemento c. O gráfico da função constante é uma reta paralela ao eixo x, passando pelo ponto (0, c). Im = {c}

9 Exemplos:

10 1) o gráfico de uma função do 1º grau é sempre uma reta. 2) na função f(x) = ax + b, a e b 0 f é dita função afim. Nota : consta que o termo AFIM foi introduzido por Leonhard Euler (pronuncia-se óiler) - excepcional matemático suíço /1783). 3) o gráfico intercepta o eixo dos x na raiz da equação f(x) = 0 e, portanto, no ponto de abcissa x = - b/a. 4) o gráfico intercepta o eixo dos y no ponto (0, b), onde b é chamado coeficiente linear. 5) o valor a é chamado coeficiente angular e dá a inclinação da reta. 6) se a 0, então f é crescente. 7) se a 0, então f é decrescente. 8) quando a função é linear, ou seja, y = f(x) = ax, o gráfico é uma reta que sempre passa na origem. Propriedades da função do 1º grau :

11 FUNÇÃO AFIM A cada elemento x associa o elemento ax + b, com a diferente de 0. O gráfico da função afim é uma reta. O coeficiente a é denominado coeficiente angular ou declividade da reta. O coeficiente b é denominado coeficiente linear.

12 Exemplos:

13 Caso Particular da Função Afim: Função Linear Uma função com lei de formação do tipo y = ax, com, é chamada de função linear. A função linear é um caso particular da função afim, pois y =ax equivale a y = ax + b, com b = 0. O gráfico da função linear é também uma reta, mas esta reta passa sempre no ponto (0 ; 0) ou seja corta o eixo de coordenadas no meio. A função linear y = x, onde a = 1 é chamada de função identidade.

14 FUNÇÃO LINEAR A cada elemento x associa o elemento ax, com a diferente de 0. O gráfico da função linear é uma reta que passa pela origem. Im = R


Carregar ppt "Funções descrevem relações especiais entre 2 objetos: x e y=f(x); x é chamado de argumento da função f; e y, de imagem; Uma função é uma forma de referenciar."

Apresentações semelhantes


Anúncios Google