A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

FUNÇÕES: CONCEITOS BÁSICOS O que você deve saber sobre O conceito de função é estabelecido a partir das relações entre grandezas, tão presentes no cotidiano,

Apresentações semelhantes


Apresentação em tema: "FUNÇÕES: CONCEITOS BÁSICOS O que você deve saber sobre O conceito de função é estabelecido a partir das relações entre grandezas, tão presentes no cotidiano,"— Transcrição da apresentação:

1 FUNÇÕES: CONCEITOS BÁSICOS O que você deve saber sobre O conceito de função é estabelecido a partir das relações entre grandezas, tão presentes no cotidiano, sendo fundamental na modelagem matemática de fenômenos naturais, econômicos e sociais.

2 I. Definição de função A = {} Sejam A e B conjuntos. Dizemos que f é uma função se qualquer elemento de A corresponder a um, e somente um, elemento de B. FUNÇÕES: CONCEITOS BÁSICOS

3 II. Alguns conceitos básicos a) x e y: variável independente e variável dependente, respectivamente b) Domínio da função: conjunto A c) Contradomínio da função: conjunto B d) Imagem de x pela função: cada elemento y do contradomínio que tem algum correspondente x no domínio. e) Conjunto imagem da função: formado por todos os valores de y que são imagens de algum valor de x. É um subconjunto do contradomínio; em alguns casos, eles podem ser iguais. FUNÇÕES: CONCEITOS BÁSICOS

4 III. Diagrama de Venn A = {1, 2, 3, 4, 5}B = {1, 2, 3, 4, 5, 6, 7, 8,9, 10} Representação da função f: A B FUNÇÕES: CONCEITOS BÁSICOS

5 IV. Função polinomial na variável real x É toda função definida por uma expressão analítica do tipo: FUNÇÕES: CONCEITOS BÁSICOS

6 V. Raízes de uma função É(São) o(s) valor(es) de x que torna(m) f(x) nula. Também pode(m) ser chamado(s) de zero(s) da função. Para funções polinomiais, dependendo do grau da função (maior expoente de x na expressão de f(x)), pode haver mais de uma raiz. Na verdade, o número de raízes reais da função é menor ou igual ao grau da função. Para o cálculo da(s) raiz(ízes), conhecendo-se a expressão analítica de f(x), basta fazer f(x) = 0 e isolar x na equação. Para funções polinomiais de grau n < 5, existem fórmulas construídas a partir dos coeficientes da função que permitem a determinação de suas raízes. No caso de funções de grau n 5, devem ser aplicadas outras técnicas. FUNÇÕES: CONCEITOS BÁSICOS

7 VI. Análise do gráfico de uma função A representação gráfica de uma função evidencia algumas de suas características mais relevantes e auxilia na análise do comportamento delas à medida que percorremos o domínio e verificamos como varia a imagem da função. FUNÇÕES: CONCEITOS BÁSICOS

8 VI. Análise do gráfico de uma função Máximo e mínimo FUNÇÕES: CONCEITOS BÁSICOS

9 VI. Análise do gráfico de uma função O sinal FUNÇÕES: CONCEITOS BÁSICOS

10 Função modular Clique na imagem abaixo para ver a animação. FUNÇÕES: CONCEITOS BÁSICOS

11 VII. Funções por partes Exemplo : FUNÇÕES: CONCEITOS BÁSICOS y x

12 Função inversa Clique na imagem abaixo para ver a animação. FUNÇÕES: CONCEITOS BÁSICOS

13 Dadas as funções f: A B e g: B C, chamamos função composta de g com f a função (g О f): A C, tal que: Ou seja, a composição das funções f e g se dá de tal forma que, para todo x A, a imagem de f(x) seja tomada como valor no domínio para a função g. VIII. Função composta FUNÇÕES: CONCEITOS BÁSICOS, para todo x A

14 Para garantir a existência da função composta (g О f)(x): o contradomínio de f deve ser igual ao domínio de g; numa composição de três ou mais funções, o uso de parênteses indica a ordem na composição; por exemplo, (g О f) О h indica primeiro a composição de g com f, seguida da composição com h; quando a composição de funções for possível, ela deve respeitar a propriedade associativa, ou seja: VIII. Função composta FUNÇÕES: CONCEITOS BÁSICOS

15 IX. Função inversa Consideremos a função f: A B. Função sobrejetora: o conjunto imagem de f é igual a seu contradomínio, ou seja, Im(f) = B. Função injetora: para quaisquer valores x 1 x 2 no domínio, f(x 1 ) f(x 2 ). Função bijetora: a sobrejetora e a injetora, simultaneamente. Função inversa: a função f -1 : B A, tal que, para todo par de valores (x, y) f, existe um par (y, x) f -1. FUNÇÕES: CONCEITOS BÁSICOS

16 IX. Função inversa FUNÇÕES: CONCEITOS BÁSICOS

17 Função inversa Clique na imagem abaixo para ver a animação. FUNÇÕES: CONCEITOS BÁSICOS

18 (FGV-SP) Considere uma função p(x), tal que 2p(x) – p(2 – x) = 3x 2 – 3x – 2. a) Calcule p(1). b) Qual é o valor da soma p(1) + p(3)? 2 EXERC Í CIOS ESSENCIAIS RESPOSTA: FUNÇÕES: CONCEITOS BÁSICOS NO VESTIBULAR

19 (Unesp) Considere as funções polinomiais f(x) = x 3 + x 2 + 2x - 1 e g(x) = x 3 + 3x + 1, cujos gráficos se interceptam em dois pontos, como esboçado na figura (não em escala). Determine para quais valores reais f(x) g(x), isto é, determine o conjunto S ={x I R| f(x) g(x)}. 3 EXERC Í CIOS ESSENCIAIS RESPOSTA: FUNÇÕES: CONCEITOS BÁSICOS NO VESTIBULAR

20 (Ufla-MG) Determine o polinômio de quarto grau, cujo esboço do gráfico é: 5 EXERC Í CIOS ESSENCIAIS RESPOSTA: FUNÇÕES: CONCEITOS BÁSICOS NO VESTIBULAR

21 (Unesp) Seja x o número de anos decorridos a partir de 1960 (x = 0). A função y = f(x) = x fornece, aproximadamente, a média de concentração de CO 2 na atmosfera em ppm (partes por milhão) em função de x. A média de variação do nível do mar, em cm, em função de x, é dada aproximadamente pela função g(x) = 1 x. Seja h a função que fornece a média de variação do 5 nível do mar em função da concentração de CO 2. No diagrama seguinte estão representadas as funções f, g e h. Determine a expressão de h em função de y e calcule quantos centímetros o nível do mar terá aumentado quando a concentração de CO 2 na atmosfera for de 400 ppm. 7 EXERC Í CIOS ESSENCIAIS RESPOSTA: FUNÇÕES: CONCEITOS BÁSICOS NO VESTIBULAR

22 (Unesp) É dado o polinômio cúbico P(x) = x 3 + x 2 - 2x, com x I R. a) Calcule todas as raízes de P(x). b) Esboce, qualitativamente, o seu gráfico no plano (x, P(x)), fazendo-o passar por suas raízes. 8 EXERC Í CIOS ESSENCIAIS RESPOSTA: FUNÇÕES: CONCEITOS BÁSICOS NO VESTIBULAR

23 (UFU-MG) Considere as funções reais de variável real definidas por f(x) = x 2 3 e g(x) = |x|. Determine quantas soluções tem a equação (g O f)(x) = 2, em que g O f é a função composta de g com f. 12 EXERC Í CIOS ESSENCIAIS RESPOSTA: FUNÇÕES: CONCEITOS BÁSICOS NO VESTIBULAR

24 (UFSCar-SP) Considere as funções reais f e g, definidas por: a) Determine o domínio da função f e a imagem da função g. b) Determine o domínio de f(g(x)). 13 EXERC Í CIOS ESSENCIAIS RESPOSTA: FUNÇÕES: CONCEITOS BÁSICOS NO VESTIBULAR

25 (UFRRJ) Considere a função f(x): Determine os intervalos nos quais f(x) é estritamente negativa. 14 EXERC Í CIOS ESSENCIAIS RESPOSTA: FUNÇÕES: CONCEITOS BÁSICOS NO VESTIBULAR


Carregar ppt "FUNÇÕES: CONCEITOS BÁSICOS O que você deve saber sobre O conceito de função é estabelecido a partir das relações entre grandezas, tão presentes no cotidiano,"

Apresentações semelhantes


Anúncios Google