A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

FUNÇÕES TRIGONOMÉTRICAS O que você deve saber sobre As funções trigonométricas são muito úteis na modelagem de fenômenos periódicos observados na natureza.

Apresentações semelhantes


Apresentação em tema: "FUNÇÕES TRIGONOMÉTRICAS O que você deve saber sobre As funções trigonométricas são muito úteis na modelagem de fenômenos periódicos observados na natureza."— Transcrição da apresentação:

1 FUNÇÕES TRIGONOMÉTRICAS O que você deve saber sobre As funções trigonométricas são muito úteis na modelagem de fenômenos periódicos observados na natureza. Conceitos como amplitude e período, além das transformações possíveis em seus gráficos, permitem aplicações na astronomia, na geografia, na medicina e em inúmeros outros campos do conhecimento humano.

2 FUNÇÕES TRIGONOMÉTRICAS É definida como a relação f: que associa a cada valor real x um valor real y = sen x, correspondente à coordenada y C do ponto C, extremidade dos arcos côngruos a x na circunferência trigonométrica, de tal modo que: I. A função seno

3 Gráfico de f(x) = sen x Para valores do domínio 0 e 2 (1 a volta positiva no centro), a função sen x assume todos os valores reais no intervalo [–1, 1]. Esse comportamento se repete nos intervalos com extremidades cujos calores são múltiplos inteiros de 2. Ex.: Em [–2, 4 ], existem seis valores de x cuja imagem vale –0,5 (indicados no gráfico por setas vermelhas). I. A função seno FUNÇÕES TRIGONOMÉTRICAS

4 O valor 2 é chamado período da função seno, pois, a cada intervalo correspondente a 2 percorrido no domínio, os valores de f(x) percorrem novamente o intervalo de –1 a 1, como na 1 a volta da circunferência, e assim sucessivamente, tanto no sentido anti-horário da circunferência trigonométrica como no sentido horário. Veja que f(x) = f(x + 2 ) = f(x + 4 ) = f(x + 6 ) e assim por diante, pois cada 2 corresponde a uma volta completa. O intervalo de variação da imagem de y = sen x é y [–1, 1], e sua amplitude é igual a 1, o que representa o quanto os valores de sen x variam acima e abaixo de zero. I. A função seno FUNÇÕES TRIGONOMÉTRICAS

5 É definida como a relação f: que associa a cada valor real x um valor real y correspondente à abscissa x C do ponto C, extremidade dos arcos côngruos a x na circunferência trigonométrica, de tal modo que: II. A função cosseno FUNÇÕES TRIGONOMÉTRICAS

6 I. as curvas das funções seno e cosseno têm o mesmo formato, embora defasadas (deslocadas) unidades uma em relação a outra; II. ambas têm amplitude igual a 1, com a imagem variando no intervalo fechado [–1, 1]; III. ambas têm período igual a 2. II. A função cosseno Observe o gráfico da função y – cos x, para x FUNÇÕES TRIGONOMÉTRICAS 2

7 É definida como a relação f: que associa a cada valor real x um valor real t, que corresponde à ordenada do ponto T, obtido a partir do arco x que pertence à circunferência trigonométrica, de tal modo que t = AT = tg x. III. A função tangente FUNÇÕES TRIGONOMÉTRICAS

8 Nesse gráfico, merecem destaque os pontos em que a curva não é contínua, pois para os valores de x = + k, com k inteiro, a função não está definida. III. A função tangente Gráfico da função f(x) = tg x FUNÇÕES TRIGONOMÉTRICAS 2

9 Vamos partir da função seno e introduzir parâmetros, um de cada vez, observando as consequências geométricas sobre o gráfico. A função geral tem o formato: y = a sen(bx + c) + d Gráficos de y = sen x e y = 2. sen x (a = 2; b = c = d = 0) O coeficiente a influi na amplitude da função. IV. Comentários gerais FUNÇÕES TRIGONOMÉTRICAS

10 Gráficos de y = sen x e y = sen 2x (a = c = d = 0; b = 2) O coeficiente b altera o período da função. IV. Comentários gerais FUNÇÕES TRIGONOMÉTRICAS

11 Gráficos de y = sen x e y = sen(x + 1) (a = b = d = 0; c = 1) O parâmetro denotado pela letra c provoca uma translação horizontal no gráfico da função. IV. Comentários gerais FUNÇÕES TRIGONOMÉTRICAS

12 Gráficos de y = sen x e y = sen x + 1 (a = b = c = 0; d = 1) Nesse caso, o parâmetro d desloca o gráfico verticalmente. IV. Comentários gerais FUNÇÕES TRIGONOMÉTRICAS

13 Funções trigonométricas Clique na imagem para ver a animação.

14 (UFC-CE) Considere as funções definidas f: e g:, respectivamente, por f(x) = x e g(x) = cos x - sen x. a) Explicite a função composta h(x) = f(g(x)). b) Determine o valor máximo da função composta h(x) = f(g(x)). 1 FUNÇÕES TRIGONOMÉTRICAS – NO VESTIBULAR EXERC Í CIOS ESSENCIAIS RESPOSTA:

15 O fenômeno das marés pode ser descrito por uma função da forma f(t) = a sen (b t), em que a é medido em metros e t em horas. Se o intervalo entre duas marés altas sucessivas é 12,4 horas, tendo sempre a mesma altura máxima de 1,5 metro, então: 2 EXERC Í CIOS ESSENCIAIS ( PUC-Campinas-SP) O subir e descer das marés é regulado por vários fatores, sendo o principal deles a atração gravitacional entre Terra e Lua. Se desprezássemos os demais fatores, teríamos sempre o intervalo de 12,4 horas entre duas marés altas consecutivas, e também sempre a mesma altura máxima de maré, por exemplo, 1,5 metro. Nessa situação, o gráfico da função que relacionaria tempo (t) e altura de maré (A) seria semelhante a este: FUNÇÕES TRIGONOMÉTRICAS – NO VESTIBULAR RESPOSTA: A

16 (PUC-SP) Na figura a seguir tem-se o gráfico função f, de em, definida por f(x) = k. sen (mx), em que k e m são reais, e cujo período é 8л. 3 5 EXERC Í CIOS ESSENCIAIS FUNÇÕES TRIGONOMÉTRICAS – NO VESTIBULAR RESPOSTA: B

17 (Unifesp) Na procura de uma função y = f(t) para representar um fenômeno físico periódico, cuja variação total de y vai de 9,6 até 14,4, chegou-se a uma função da forma f(t) = A + B sen com o argumento medido em radianos. 8 EXERC Í CIOS ESSENCIAIS RESPOSTA: a) Encontre os valores de A e B para que a função f satisfaça as condições dadas. b) O número A é chamado valor médio da função. Encontre o menor t positivo no qual f assume o seu valor médio. FUNÇÕES TRIGONOMÉTRICAS – NO VESTIBULAR

18 (Unifesp) Considere a função y = f(x) = 1 + sen definida para todo x real a) Dê o período e o conjunto imagem da função f. b) Obtenha todos os valores de x no intervalo [0, 1], tais que y = 1. 1 EXERC Í CIOS ESSENCIAIS 12 FUNÇÕES TRIGONOMÉTRICAS – NO VESTIBULAR RESPOSTA:

19 (UFPB) Considere um corpo, preso a uma mola, oscilando em torno da sua posição de equilíbrio O, como na figura ao lado. No instante t, a posição x = x(t) desse corpo, em relação à sua posição de equilíbrio, é dada pela função x(t) = cos, t 0. 1 EXERC Í CIOS ESSENCIAIS 15 Dessa forma, o gráfico que melhor representa a posição x desse corpo, como função do tempo t, em relação ao ponto O, é: FUNÇÕES TRIGONOMÉTRICAS – NO VESTIBULAR RESPOSTA: B Comparemos as funções: f(t) = cos t e g(t) = cos (at + b) em que, a = e b, analisando a influência dos coeficientes a e b no gráfico de f(t): a > 1 altera o período diminuindo-o; isso descarta as alternativas d e e; b > 0 desloca o gráfico horizontalmente para a direita; g (t) = 0; À medida que t aumenta, a partir de t = 0, g(t) também aumenta; portanto, ela é crescente no início, e a alternativa a está descartada. Portanto, o gráfico que melhor representa a função x(t), respeitando as considerações anteriores, está na alternativa b. 3 2


Carregar ppt "FUNÇÕES TRIGONOMÉTRICAS O que você deve saber sobre As funções trigonométricas são muito úteis na modelagem de fenômenos periódicos observados na natureza."

Apresentações semelhantes


Anúncios Google