A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Capítulo 6 Cálculo – Thomas Addison Wesley Slide 1 Cálculo - Thomas Capítulo 6.

Apresentações semelhantes


Apresentação em tema: "Capítulo 6 Cálculo – Thomas Addison Wesley Slide 1 Cálculo - Thomas Capítulo 6."— Transcrição da apresentação:

1 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 1 Cálculo - Thomas Capítulo 6

2 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 2 Figura 6.1: O gráfico de y = ln/x e sua relação com a função y = 1/x, x > 0. O gráfico do logaritmo fica acima do eixo x à medida que x se desloca de 1 para a direita e cai abaixo do eixo x à medida que x se desloca de 1 para a esquerda.

3 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 3 Figura 6.2: Os gráficos de y = ln x e y = ln –1 x. O número e é ln –1 1.

4 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 4 Figura 6.6: O aumento da corrente no circuito RL do Exemplo 6 é o valor da corrente no estado estacionário. O número t = L/R representa a constante de tempo do circuito. A corrente atinge 5% de seu valor de estado estacionário a cada 3 constantes de tempo (Exercício 31).

5 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 5 Figura 6.9: Três passos na aproximação de Euler da solução do problema de valor inicial y´ = ƒ(x, y), y (x 0 ) = y 0. Conforme damos mais passos, os erros envolvidos normalmente se acumulam, mas não da maneira exagerada apresentada aqui.

6 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 6 Figura 6.10: O gráfico de y = 2e x – 1 sobreposto ao gráfico de dispersão das aproximações de Euler mostradas na Tabela 6.1 (Exemplo 3).

7 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 7 Figura 6.11: Observe que o valor da solução P = 4454e 0.017t é 6.152,16 quando t = 19. (Exemplo 5)

8 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 8 Figura 6.12: Curvas integrais para o modelo populacional logístico dP/dt = r (M – P)P.

9 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 9 Figura 6.13: Um campo de direções para a equação diferencial logística = (100 – P)P. (Exemplo 6) dP dt

10 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 10 Figura 6.14: As aproximações de Euler para a solução dP/dt = 0.001(100 – P)P, P(0) = 10, tamanho de passo dt = 1.

11 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 11 Figura 6.16: Gráficos das seis funções hiperbólicas básicas.

12 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 12 Cont.

13 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 13 Cont.

14 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 14 Figura 6.17: Os gráficos dos inversos de seno, cosseno e secante hiperbólicos de x. Note as simetrias em torno da reta y = x.

15 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 15 Cont.

16 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 16 Figura 6.18: Os gráficos das inversas da tangente, da cotangente e da cossecante hiperbólicas de x.

17 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 17 Cont.

18 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 18 Figura 6.20: Uma das analogias entre as funções hiperbólicas e circulares é revelada por esses dois diagramas (Exercício 84).

19 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 19 Figura 6.21: Em um sistema de eixos coordenados adotado para fazer com que H e w se encaixem da maneira abaixo, um cabo suspenso coincide com a curva y = (H/w) cosh (wx/H).

20 Capítulo 6 Cálculo – Thomas Addison Wesley Slide 20 Figura 6.22: Como discutido no Exercício 85, T = wy neste sistema coordenado.


Carregar ppt "Capítulo 6 Cálculo – Thomas Addison Wesley Slide 1 Cálculo - Thomas Capítulo 6."

Apresentações semelhantes


Anúncios Google