A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Método dos Elementos de Fronteira e Métodos Híbridos Vitor Maló Machado I. S. T., Maio de 2011.

Apresentações semelhantes


Apresentação em tema: "Método dos Elementos de Fronteira e Métodos Híbridos Vitor Maló Machado I. S. T., Maio de 2011."— Transcrição da apresentação:

1 Método dos Elementos de Fronteira e Métodos Híbridos Vitor Maló Machado I. S. T., Maio de 2011

2 Equações do tipo elíptico – Formulação diferencial Considere-se a equação diferencial linear não homogénea (1) em que L é um operador linear do tipo elíptico (2) Esta equação tem a forma da equação de difusão ( =1/, = j e g =- J s ) ou a dAlembert no domínio da frequência (esta última chamada de equação de Helmoltz) ( =1, =-(k ) e g=0). No caso em que =0 obtem-se a chamada equação de Poisson (caso estacionário): em problemas do campo magnético, =1/, g=-J, em problemas do campo eléctrico, em meios dieléctricos, =, g=-, em meios condutores, = g=0. Teorema da unicidade de solução: A solução de (1) existe e é única se e só se as condições de fronteira forem do tipo de Dirichlet ou de Neumann, mas não conjuntamente as duas, ou uma sua combinação linear, em todos os pontos da fronteira S V do domínio V.

3

4 Equações Elípticas – Formulação Integral Teorema de Green Tendo em conta que e obtem-se subtraindo membro a membro e aplicando o teorema da divergência:

5 Função de Green, G, é a solução da equação Obtem-se assim o resultado

6 Função de Green A função G pode ser interpretada como o potencial do ponto de observação criado por uma distribuição pontual (filiforme para um problema a duas dimensões) da fonte do campo. Caso de meios homogéneos no espaço aberto não dispersivos (equação de Poisson) Formulação integral em volume (meios homogéneos no espaço aberto – caso de problemas a 3D)

7 Solução da equação homogénea, formulação integral em superfície No caso da equação ser homogénea (ausência de fontes, g=0), então a solução é potencial de uma dupla camada potencial de uma distribuição superficial de cargas

8 Método dos elementos de fronteira – regiões de fontes nulas (g=0) No método dos elementos de fronteira, a discretização é feita em superfície. A particularização que se apresenta é para casos de domínios V onde não existem fontes do campo – as fontes do campo estão nas regiões exteriores ao domínio. A equação anterior vai ser aplicada aos pontos da fronteira S V. Logo estamos perante o caso em que para cada ponto de observação existirá sempre um ponto de integração (o próprio ponto) coincidente com o ponto de observação e portanto onde as funções nucleares (Kernel) são singulares. Mas o integral é regular! O resultado obtem-se deformando a fronteira em torno do ponto de singularidade através de uma semi-esfera de raio r 0, centrada no ponto de singularidade, e subtraindo a contribuição desta semi- esfera para o limite em que r 0 tende para zero. Essa contribuição é metade do potencial do ponto de observação.

9 Verificação para problemas 3D do tipo de Poisson Seja S 0 a semi-esfera de raio r 0. A contribuição dessa semi-esfera para o potencial no seu centro será então dada por: pois a direcção normal em S 0 é a direcção radial. Tendo em conta a forma da função de Green G (problemas 3D de Poisson), obtem-se

10 Formulação do BEM A formulação para o método dos elementos de fronteira (BEM) vem assim Consideremos agora a fronteira discretizada em E S elementos (elementos de fronteira) e N S nodos de modo que a função potencial seja decomposta num desenvolvimento em termos das funções de base em cada elemento e, tal como se fez para o FEM Consideremos que é constante em cada elemento.

11 A equação anterior pode assim escrever-se na forma matricial Para elementos triangulares, tomando interpolações de 1ª ordem, a matriz [A], de dimensão N S xN S, é dada por

12 A matriz [B], de dimensão N S xE S, ordem é dada por Os integrais que constam em a pk e b pe podem ser calculados analíticamente tendo em conta a função de Green, a sua derivada na direcção normal e as funções de base tomadas. Estes integrais podem igualmente ser calculados por técnicas numéricas como por exemplo técnicas de integração por quadratura. A derivada normal da função de Green é dada por

13 Problemas de 1ª espécie Para problemas de 1ª espécie em que se conhecem os potencias nos N S nodos da discretização da fronteira S V, a solução do problema pode ser obtida, tendo em conta o resultado de Gauss para problemas sobre- determinados A matriz [B] T [B] é uma matriz definida positiva e portanto não singular se as colunas de [B] forem linearmente independentes. Problemas de 2ª espécie Para problemas de 2ª espécie em que se conhecem os valores das derivadas normais da função potencial em cada elemento da discretização da fronteira S V, a solução do problema pode ser obtida por

14 Métodos híbridos Métodos híbridos são aqueles que resultam da combinação de métodos diferentes para a resolução das equações fundamentais do campo. O FEM é apropriado para a resolução de problemas de fronteiras fechadas. Para problemas de fronteiras abertas, o uso do FEM obriga à adopção de adaptações apropriadas do método já anteriormente referidas. A adopção de métodos híbridos são uma possibilidade. O caso mais frequente consiste na combinação do FEM com o BEM, de modo a aproveitar-se as vantagens de cada método. O FEM é adequado para tratamento de regiões contendo as fontes do campo, não homogéneas, não lineares ou anisotrópicas com fronteiras de configuração irregular. O BEM é adequado para tratamento de regiões abertas e, em geral, homogéneas. Assim, é natural a consideração de uma superfície fictícia S f dividindo o espaço numa região interior de volume V limitada por S f contendo as heterogeneidades, as fronteiras irregulares e as fontes campo, e numa região exterior ilimitada e homogénea. Na região interior, a aproximação do campo é descrita pela formulação do FEM. Na região exterior a formulação é decorrente do BEM.

15 Formulação do método híbrido FEM/BEM A formulação do método dos elementos finitos corresponde em que a matrizes [M] e (H) são as definidas anteriormente quando se introduziu o FEM. O índice i diz respeito aos nodos interiores não pertencentes à fronteira fictícia S f, o índice S diz respeito aos nodos de S f e o índice e diz respeito aos elementos de superfície de S f. A matriz [U] é de dimensão N S xE S

16 Assim, combinando o FEM com o BEM, obtem-se a equação matricial As matrizes A e B são as referidas para o BEM (com os sinais trocados pois a normal n do domínio V limitado por S f tem o sentido contrário da normal ao domínio exterior de V). A ordem matricial é N+E S. A matriz principal deixou, todavia de ser simétrica e de banda, embora seja esparsa.

17 Método híbrido FEM/FA (forma analítica) problemas 2D Considere-se para o espaço exterior, homogéneo, a uma superfície cilíndrica de raio r 0 (DFT) Na forma matricial, vem em que

18 Pelo que, em consequência de [W] ser matriz unitária Se fizermos então as linhas e colunas das matrizes [W] e [Q] variam l, n=1,..., M, M+1, M+2,..., 2M+1=N S. Por fim, pode obter-se a matriz dos valores em cada elemento da superfície fictícia, adequada para problemas 2D em que [S] é a matriz de incidências, de dimensão E S xN S, da variável definida nodo a nodo da fronteira fictícia. (se a superfície fictícia for fechada E S =N S ) Finalmente, obtem-se em que [E] é a matriz identidade de dimensão E S xE S. A matriz [G] tem dimensão E S xN S.

19 Combinando-se com o FEM, obtem-se

20 Referências V. Maló Machado, A Special Hybrid FE/BE Method for Open Magnetic Field Problems, IEE Proc. – Sci. Meas. Technol., UK, Vol Nº 5, pp , Sept J. F. Borges da Silva, V. Maló Machado, Time-Harmonic Electromagnetic Field using a Hybrid FEM/BoundaryMethod for Open Transmission Line Systems, IEEE Trans. on Magnetics, USA, Vol. 34, nº 5, pp , Sept V. Maló Machado, Hybrid FE/BE Method for Axisymmetric Magnetic Field Problems, Actas do 8º Congresso Luso-Espanhol de Engenharia Electrotécnica, 8th CLEEE, Vilamoura, Portugal, Vol. 1, pp , July 3-5, S.J. Salon, J.M. Schneider, A Hybrid Finite Element-Boundary Integral Formulation of the Eddy Current Problem, IEEE Trans. on Magnetics, USA, Vol. 18, nº 2, pp , March S.J.Salon, The Hybrid Finite Element-Boundary Element Method in Electromagnetics, IEEE Trans. on Magnetics, USA, Vol. 21, nº 5, pp , Sept H. Singer, H. Steinbigler, P. Weiss, A Charge Simulation Method for the Calculation of High Voltage Fields, IEEE Trans. on PAS, USA, Vol. 93, pp , Z. Ren, C. Li, A. Razek, Hybrid FEM-BIM Formulation Using Electric and Magnetic Variables, IEEE Trans. on Magnetics, USA, Vol. 28, nº 2, pp , March Q. Chen, A. Konrad, P. Biringer, An Integrodifferential Finite-Element-Green´s Function Method for the Solution of Unbounded Eddy Current Problems, IEEE Trans. on Magnetics, USA, Vol. 29, nº 2, pp , March 1993.


Carregar ppt "Método dos Elementos de Fronteira e Métodos Híbridos Vitor Maló Machado I. S. T., Maio de 2011."

Apresentações semelhantes


Anúncios Google