A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Semelhança de Figuras 1. Semelhança de Figuras NOÇÃO DE FORMA Qual das figuras (1, 2, 3 ou 4) tem a mesma forma da figura A? 2.

Apresentações semelhantes


Apresentação em tema: "Semelhança de Figuras 1. Semelhança de Figuras NOÇÃO DE FORMA Qual das figuras (1, 2, 3 ou 4) tem a mesma forma da figura A? 2."— Transcrição da apresentação:

1 Semelhança de Figuras 1

2 Semelhança de Figuras NOÇÃO DE FORMA Qual das figuras (1, 2, 3 ou 4) tem a mesma forma da figura A? 2

3 Semelhança de Figuras Devem ter reparado que apenas a figura 1 tem a mesma forma da figura A. Isso só acontece porque: a figura 1 é uma redução da figura A ou a figura A é uma ampliação da figura 1. 3

4 Semelhança de Figuras 4 Duas figuras têm a mesma forma se uma delas é uma ampliação ou redução da outra ou se forem geometricamente iguais.

5 Semelhança de Figuras Conclusão: Duas figuras são semelhantes se tiverem a mesma forma. As 3 figuras são semelhantes. F 1 e F 3 são geometricamente iguais e F 2 é uma ampliação das outras. Para dizer que as figuras são semelhantes escreve-se: F 1 ~ F 2 ~ F 3 5

6 Semelhança de Figuras Os dois quadrados representados ao lado são semelhantes. 6 Repare que o quadrado B é uma ampliação do quadrado A. Se dividirmos o comprimento do lado do quadrado B pelo comprimento do lado do quadrado A, teremos: A medida dos lados do quadrado B é o dobro da medida dos lados do quadrado A. O número 2 é a razão de semelhança na ampliação.

7 Semelhança de Figuras Para representar a razão de semelhança usa-se a letra k. Para o caso anterior, podemos dizer que a razão de semelhança na ampliação do quadrado A para o quadrado B é: k = 2 Pode ainda dizer-se que o quadrado B é uma ampliação do quadrado A na escala 2:1. 7

8 Semelhança de Figuras Observe os retângulos A e B da figura. O retângulo B é uma redução do retângulo A. Repara que os lados do retângulo B têm ambos metade do comprimento dos lados do retângulo A. Para calcular a razão de semelhança na redução teremos que dividir o comprimento do lado do retângulo menor pelo lado correspondente do maior. A razão de semelhança é: k = 0,5. 8

9 Semelhança de Figuras Se as duas figuras forem geometricamente iguais, qual será a razão de semelhança de uma para a outra? Repare que, sendo as figuras geometricamente iguais, elas têm as mesmas dimensões. Neste caso, a razão de semelhança é 1 (ou seja, k = 1). 9

10 Semelhança de Figuras CONDIÇÃO: Dois ou mais polígonos são ditos semelhantes quando: -Os ângulos correspondentes são congruentes; -As medidas de lados correspondentes são proporcionais. -Neste caso é necessário satisfazer as duas condições. 10

11 Semelhança de Figuras Numa redução a razão de semelhança é menor do que 1 (k < 1). Numa ampliação a razão de semelhança é maior do que 1 (k > 1). Entre duas figuras geometricamente iguais a razão de semelhança é igual a 1 (k = 1). 11

12 EXERCÍCIOS Copiar no caderno.

13 Semelhança de Polígonos CONDIÇÃO: Dois ou mais polígonos são ditos Semelhantes quando: -Os ângulos correspondentes são congruentes; -As medidas de lados correspondentes são proporcionais. -Neste caso é necessário satisfazer as duas condições. 13

14 1) Diga se os pares de triângulos abaixo são ou não semelhantes.

15 2) Nas figuras abaixo, determine as medidas x e y.

16 3) Na figura abaixo, MN// BC. Nessas condições, determine: a) As medidas x e y indicadas. b) As medidas dos lados AB e AC. c) Os perímetros dos triângulos ABC e AMN. d) A razão de semelhança entre os triângulos ABC e AMN.


Carregar ppt "Semelhança de Figuras 1. Semelhança de Figuras NOÇÃO DE FORMA Qual das figuras (1, 2, 3 ou 4) tem a mesma forma da figura A? 2."

Apresentações semelhantes


Anúncios Google