A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Lógica de 1a Ordem Introdução

Apresentações semelhantes


Apresentação em tema: "Lógica de 1a Ordem Introdução"— Transcrição da apresentação:

1 Lógica de 1a Ordem Introdução
Na Lógica Proposicional (LP) um átomo (P, Q, R,...) representa uma sentença declarativa que pode ser V ou F, mas não ambos. Um átomo é tratado como uma entidade única. Seus atributos e componentes são desprezados Muitas idéias não podem ser tratadas de maneira tão simples

2 Lógica de 1a Ordem Introdução
Exemplo: Representar na Lógica Proposicional Todo homem é mortal Sócrates é um homem Logo, Sócrates é mortal Se representarmos por: P: Todo homem é mortal Q: Sócrates é um homem R: Sócrates é mortal {P, Q} |≠ R Isso acontece porque os atributos (predicados ou características) de P, Q e R não são considerados

3 Lógica de 1a Ordem Introdução
Para provar que esse argumento é válido, é necessário identificar indivíduos tais como Sócrates, e seus predicados. Predicados descrevem características ou relacionamentos entre indivíduos (objetos) A Lógica dos Predicados apresenta mais três conceitos lógicos: termos, predicados e quantificadores.

4 Enunciados Categóricos
Todo S é P Qualquer que seja x, se x é S, então x é P. x (S(x)  P(x)) Nenhum S é P Qualquer que seja x, se x é S, então x não é P. x (S(x)  ~P(x))

5 Enunciados Categóricos
Algum S é P Para pelo menos um x, x é S e x é P. x (S(x) ^ P(x)) Algum S não é P Para pelo menos um x, x é S e x não é P. x (S(x) ^ ~P(x))

6 Enunciados Categóricos
Exemplo Formalizar: Todo homem é mortal Sócrates é um homem Logo, Sócrates é mortal x (H(x)  M(x)) H(sócrates) M(sócrates) Considererando Predicados M(x): x é mortal H(x): x é um homem Um individuo: Sócrates

7 Exercício: Para formalizar os argumentos que seguem, Interprete as letras C, R, V e S como: C  está chovendo; R  é uma rã; V  é verde; S  é saltitante; a – Todas as rãs são verdes. x (R(x)  V(x))

8 Exercício: b – Nenhuma rã é verde. x (R(x)  ~V(x))
c – Algumas rãs são verdes. x (R(x) ^ V(x)) d – Toda coisa é uma rã. x (R(x)) e – Nada é uma rã. x (~R(x)) ou ~x (R(x))

9 Exercício 1: f – Qualquer coisa é uma rã verde. x (R(x) ^ V(x))
g – Está chovendo e algumas rãs estão saltitando. C ^ x (R(x) ^ S(x)) h – Somente rãs são verdes. x (V(x)  R (x))

10 Exercício 1: i – Algumas rãs verdes não estão saltitando.
x ((R(x) ^ V(x)) ^ ~S(x)) j – Rãs verdes saltitam se, e somente se , está chovendo. x ((R(x) ^ V(x))  (S(x)  C))

11 Exercício 2: Para formalizar os argumentos que seguem considere a interpretação: Indivíduos: Carlos, João e Maria Predicados: Mecânico(x)  x é mecânico Enfermeiro(x)  x é enfermeiro Ama(x, y)  x ama y

12 Exercício 2: 1) Carlos é mecânico Mecânico(Carlos)
2) Carlos e João são mecânicos Mecânico(Carlos) ^ Mecânico(João) 3) Carlos é mecânico ou enfermeiro Mecânico(Carlos) v Enfermeiro(Carlos)

13 Exercício 2: 4) Se Carlos é mecânico então Carlos não é enfermeiro
Mecânico(Carlos)  ~Enfermeiro(Carlos) 5) João ama Maria Ama(João, Maria) 6) João ama a si próprio Ama(João, João)

14 Exercício 2: 7) Todo mundo ama João x(Ama(x, João))
8) Existe alguém que Maria não ama x(~Ama(Maria, x)) 9) Todo mundo é amado por alguém xy(Ama(y, x))

15 Exercício 2: 10) Alguém é amado por todos xy(Ama(y,x))
11) Existe alguém que ama todo mundo xy(Ama(x,y)) 12) Alguém ama alguém xy(Ama(x,y))

16 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: um quantificador e predicados monádicos Não existem marcianos (M(x)  x é marciano) (não existe x tal que x seja um marciano)  x M(x) ( ou para todo x, x não é um marciano) x ( M(x))

17 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: um quantificador e predicados monádicos Nem todos são sábios (S(x)  x é sábio) (para nem todo x, x é sábio )  x S(x) (ou existe um x tal que x não é sábio) x ( S(x))

18 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: um quantificador e predicados monádicos Os morcegos são mamíferos (C(x)  x é morcego; M(x)  x é um mamífero) (para todo x, se x é um morcego, x é um mamífero) x (C(x)  M(x))

19 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: um quantificador e predicados monádicos Os cavalheiros não são sempre ricos (para nem todo x, se x é um cavalheiro então x é rico)  x (C(x)  R(x)) (ou, existe um x tal que x é um cavalheiro e x não é rico) x (C(x)   R(x))

20 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: um quantificador e predicados monádicos Somente os médicos podem cobrar por tratamento clínico (para todo x, se x pode cobrar por tratamento clínico, então x é médico) x (C(x)  M(x))

21 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: um quantificador e predicados monádicos Os carros são seguros somente se tiverem bons freios (para todo x, se x é um carro, então x é seguro somente se tiver bons freios) x [ C(x)  (S(x)  F(x)) ]

22 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: mais de um quantificador e predicados monádicos Alguns são espertos, outros não (existe x tal que x é esperto, e existe y tal que y não é esperto) x E(x)  y ( E(y))

23 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: mais de um quantificador e predicados monádicos Existem políticos honestos e desonestos (existe x tal que x é político e x é honesto, e existe y tal que y é político e y não é honesto) x (P(x)  H(x))  y (P(y)   H(y))

24 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: Relações
Todos têm pai (F(x,y) : x é pai de y) (para todo x existe y tal que y é pai de x) x y F(y,x) Todas as pessoas têm pai (para todo x, se x é uma pessoa, existe y tal que y é pai de x) x (P(x)  y F(x,y))

25 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: Relações
Existe um ancestral comum a todas as pessoas (existe um x tal que para todo y, se y é uma pessoa, x é ancestral de y) x y (P(y)  A(x,y)) (ou, para todo y, se y é uma pessoa, existe um x tal que x é ancestral de y) y (P(y)  x A(x,y))

26 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: Relações estabelecendo regras de parentesco Genro se x é casado com a filha de y, então x é genro de y; ou, mais precisamente: se existir z tal que x seja casado com z, e z seja filha de y, então x é genro de y x y [ z (C(x,z)  F(z,y))  G(x,y) ]

27 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: Relações estabelecendo regras de parentesco Avô se x é pai do pai de y, então x é avô de y x y [ z (P(x,z)  P(z,y))  A(x,y) ]

28 Exercício 3: EXPRESSÕES TEXTUAIS MOSTRANDO FORMAS LÓGICA E SIMBÓLICA: Relações estabelecendo regras de parentesco Irmão se o pai de x for também pai de y, x é irmão de y x y [ z (P(z,x)  P(z,y))  I(x,y) ]

29 Cuidados na Formalização:
1) Variáveis diferentes não classificam necessariamente objetos diferentes. Ex.: xy ama(x, y) Afirma não somente que qualquer pessoa ama uma outra pessoa, como também que qualquer pessoa ama a si própria.

30 Cuidados na Formalização:
2) O nome de variáveis não faz diferença para o significado. Ex.: xy ama(y, x) equivale a yx ama(x, y) equivale a zw ama(w,z)

31 Cuidados na Formalização:
3) Quando dois ou mais quantificadores justapõem-se numa mesma parte da fórmula, uma variável diferente deve ser usada para cada quantificador. Ex.: xx ama(x, x) não é correto xy ama(y, x) é correto

32 Cuidados na Formalização:
4) A mesma variável usada em vários quantificadores, não designa necessariamente o mesmo objeto em cada caso. Ex.: x ama(josé, x) ^ x ama(carlos, x)

33 Cuidados na Formalização:
5) A ordem dos quantificadores consecutivos afeta o significado somente quando os quantificadores são diferentes. Ex.: xy ama(x,y) e yx ama(x,y) tem significados distintos xy ama(x,y) e yx ama(x,y) significam a mesma coisa

34 Cuidados na Formalização:
6) Os advérbios só, somente e apenas tem significados diferentes dependendo do local em que aparecem na sentença. Representam uma implicação e o conseqüente sempre aparece depois do advérbio. Sentença Significado João ama apenas Maria Apenas João ama Maria João apenas ama Maria Se João ama alguma coisa, essa coisa é Maria Se alguma coisa ama Maria, essa coisa é João Se João tem alguma relação com Maria, essa relação é amor

35 Cuidados na Formalização:
6.1) Exemplos usando esses adverbios: Apenas cachorros perseguem gatos x(G(x)  y( P(y,x)  C(y))) ou xy((G(x) ^ P(y,x))  C(y)) Cachorros perseguem apenas gatos x y((C(x) ^ P(x,y))  G(y)) Só os diamantes brilham x (B(x)  D(x)) Diamantes só brilham x (D(x)  B(x))

36 Regras de Inferência para a Lógica de 1ª Ordem
As regras do Sistema Formal, S1, para a lógica proposicional também são usadas para a lógica de 1ª ordem: Exemplo: Provar o argumento: {~F(a) v x F(x), x F(x)  P} ├ F(a)  P

37 Prova: {~F(a) v x F(x), x F(x)  P} ├ F(a)  P
1. ~F(a) v x F(x) P 2. x F(x)  P P 3. | F(a) H p/ PC 4. |x F(x) 1 e 3 SD 5. |P 2 e 4 MP 6. F(a)  P PC

38 Regras de Inferência para a Lógica de 1ª Ordem
A Lógica de 1a Ordem herda todas as regras da Lógica Proposicional e adicionalmente tem regras específicas para a Introdução e a Eliminação dos quantificadores Universal e Existencial.

39 Eliminação Universal (EU)
De uma fórmula quantificada universalmente x , podemos inferir uma fórmula ’ da forma [x/a] , que resulta da substituição de todas as ocorrências de x em  pela constante a

40 Eliminação Universal (EU)
Exemplo Provar que: {x (H(x)  M(x)), H(s)} |- M(s) 1.x (H(x)  M(x)) P 2. H(s) P 3. H(s)  M(s) 1 EU 4. M(s) 2, 3 MP

41 Eliminação Universal (EU)
Esta regra estabelece que o que é verdade para qualquer indivíduo deve ser verdade para um indivíduo particular

42 Eliminação Universal (EU)
Ex: {~F(a)} |- ~x F(x) 1. ~F(a) P 2. |x F(x) H p/RAA 3. | F(a) 2 EU 4. | F(a) ^ ~F(a) 1, 2 ^I 5. ~x F(a) 2 – 4 RAA

43 Eliminação Universal (EU)
Ex: {xyF(x,y)} |- F(a,a) 1. xyF(x,y) P 3. yF(a,y) 1 EU 4. F(a,a) 2 EU

44 Introdução Universal (IU)
Para uma fórmula  contendo uma constante ‘a’ , podemos inferir uma fórmula da forma x `, onde ` é  com a variável x substituindo todas as ocorrências da constante ‘a’ , [a/x] Restrições: ‘a’ não ocorre nas premissas ‘a’ não ocorre em qualquer hipótese vigente na linha em que  ocorre ‘x’ não ocorre em .

45 Introdução Universal (IU)
Exemplo: {x (F(x) ^ G(x))} ├ x F(x) ^ x G(x) 1. x (F(x) ^ G(x)) P 2. F(a) ^ G(a) 1 p/ EU 3. F(a) 2 p/ ^E 4. G(a) 2 p/ ^E 5. x F(x) 3 p/ IU 6. x G(x) 4 p/ IU 7. x F(x) ^ x G(x) 5 e 6 ^I

46 Introdução Universal (IU)
Esta regra estabelece que se pudermos provar algo a respeito de uma indivíduo b sem fazer suposição que distinga b de um outro indivíduo, então o que tivermos provado para b estará provado para todos.

47 Introdução Universal (IU) Restrições:
1) A constante ‘a’ não deve ocorrer em qualquer premissa P(a) P x P(x) 1 p/ IU derivação é incorreta ! “Da premissa que ‘a’ é primo, não implica que todos os números são primos”

48 Introdução Universal (IU) Restrições:
2) A constante ‘a’ não deve ocorrer em qualquer hipótese vigente numa linha em que  ocorre: 1. x (P(x)  C(x)) P 2. P(a)  C(a) EU 3. | P(a) H p/PC 4. | C(a) 2, 3 MP 5. | x C(x) IU 6. P(a)  x C(x) 3, 5 PC Derivação incorreta ! (Suponha P: é Políto; C é corrupto)

49 Introdução Universal (IU) Restrições:
Derivação incorreta! Da premissa de que “todos os políticos são corruptos, não se segue que, se João é político todos são corruptos.

50 Introdução Existencial (IE):
Dada uma fórmula  contendo uma constante ‘a’, podemos inferir uma fórmula da forma x`, onde ` é obtida de  pela substituição de uma ou mais ocorrências de ‘a’ em  pela variável x, [a/x]. Restrição: x não ocorre em .

51 Introdução Existencial (IE):
Ex.: {x (F(x) v G(x))} ├ x (F(x) v G(x)) 1. x (F(x) v G(x)) P 2. F(a) v G(a) 1 p/ EU 3. x (F(x) v G(x)) 2 p/ IE

52 Introdução Existencial (IE):
A regra IE estabelece duas pressuposições: 1) Todas as constantes referem-se a indivíduos existentes Exemplo: M (a) Apolo é mitológico x M(x) 2) Existe pelo menos um indivíduo

53 Eliminação Existencial (EE):
Dada uma fórmula quantificada existencialmente x e uma derivação de alguma conclusão  a partir de uma hipótese da forma [x/a], podemos descartar a hipótese e reafirmar . Restrições: ‘a’ não ocorre em , ‘a’ não ocorre em  ‘a’ não ocorre em qualquer premissa ‘a’ não ocorre em qualquer hipótese vigente na linha em que EE é aplicada.

54 Eliminação Existencial (EE):
Exemplo: { x (F(x) ^ G(x)) } ├ x F(x) 1. x (F(x) ^ G(x)) P 2. | F(a) ^ G(a) H 3. | F(a) 2 ^E 4. | x F(x) 3 IE 5. x F(x) 1 e 2-4 EE

55 Essa regra requer cuidados:
1) A constante ‘a’ não deve ocorrer em : 1. x A(x, x) P 2. | A(a, a) H P/EU 3. | xA(a, x) 2 IE 4. xA(a, x) 1e 2-3 EE Derivação incorreta! “Da premissa que alguém ama a si próprio não se segue que Ana ama alguém” (x A(a, x)).

56 Essa regra requer cuidados:
2) A constante ‘a’ não pode ocorrer em : 1. xy F(y, x) P 2. y F(y, a) 1 EU 3. | F(a, a) H p/ EU 4. | x F(x, x) 3 IE 5. x F(x, x) 2e 3e 4 EE Derivação incorreta! “Da premissa que todos tem um pai (xy F(y, x)) não se segue que alguém é pai de si mesmo.”

57 Essa regra requer cuidados:
Exercício: Considere os predicados: Q(x,y): x quebra y; P(x,y): x paga y; V(x): x varre o chão; e as seguintes premissas: x y (Q(x, y))  P(x,y)) x y (Q(x, y))  V(josé)) x (Q(x, lâmpada)) Partindo da hipótese que quem quebrou a lâmpada foi joão, é correto deduzir que: a) joão pagará a lâmpada? b) josé varrerá o chão?

58 Exemplo de prova da validade de um argumento.
Todo homem é mortal Sócrates é um homem Logo, Sócrates é Mortal 1. x (H(x)  M(x)) P 2. H(sócrates) P 3. H(socrates)  M(sócrates) 1, EU 4. M(sócrates) ,3 MP

59 Exemplo de uma prova de teorema.
├ ~(x F(x) ^ x ~F(x)) 1. |x F(x) ^ x ~F(x) H p/ RAA 2. |x F(x) 1 ^E 3. |x ~F(x) 1 ^E 4. ||~F(a) H p/EE 5. ||F(a) 2 EU 6. ||P ^ ~P 4,5 CONTRAD 7. |P ^ ~P 3 E 4-6 EE 8. ~(x F(x) ^ x ~F(x)) 1-7 RAA

60 Exercícios: Prove {x(F(x)  G(x)), xF(x)} ├ xG(x)
1. x(F(x)  G(x)) P 2. xF(x) P 3. |F(a) H p/EE 4. |F(a)  G(a) 1 EU 5. |G(a) 3,4 MP 6. |xG(x) IE 7. xG(x) 2,3-6 EE

61 Exercícios: Prove {x(F(x) v G(x))} ├ xF(x) v xG(x)
1. x(F(x) v G(x)) P 2. |F(a) v G(a) H p/EE 3. ||F(a) H p/PC 4. ||xF(x) IE 5. ||xF(x) v xG(x) 4 vI 6. |F(a)  xF(x) v xG(x) PC 7. ||G(a) H p/PC 8. ||xG(x) IE 9. ||xF(x) v xG(x) vI 10.| G(a)  (xF(x) v xG(x)) PC 11.| xF(x) v xG(x) 2,6,10 vE 12. xF(x) v xG(x) 1,2-11 EE

62 Exercícios: Prove {x(F(x)  (G(x) v H(x)), x~G(x)} ├ x(F(x)  H(x))
1. x(F(x)  (G(x) v H(x)) P 2. x~G(x) P 3. F(a)  (G(a) v H(a)) 1 EU 4. ~G(a) 2 EU 5. |F(a) H p/PC 6. |G(a) v H(a) 3,5 MP 7. |H(a) 4,6 SD 8. F(a)  H(a) PC 9. x(F(x)  H(x)) 8 IU

63 Exercícios: Prove 1. xF(a,x) P 2. xy(F(x,y)  G(y,x)) P
{xF(a,x), xy(F(x,y)  G(y,x))} ├ xG(x,a) 1. xF(a,x) P 2. xy(F(x,y)  G(y,x)) P 3. F(a,b) EU 4. y(F(a,y)  G(y,a)) 2 EU 5. F(a,b)  G(b,a) 4 EU 6. G(b,a) ,5 MP 7. xG(x,a) IU

64 Exercícios: Prove 1. xy L(x,y) P 2. |y L(a,y) H p/EE
xy L(x,y)├ x y L(y,x) 1. xy L(x,y) P 2. |y L(a,y) H p/EE 3. |L(a,b) EU 4. |y L(y,b) IU 5. |x y L(y,x) IU 6. x y L(y,x) 1,2-5 EE

65 Exercícios: Prove x(F(x)  ~G(x)) ├ ~x (F(x) ^ G(x))
1. x(F(x)  ~G(x)) P 2. |x (F(x) ^ G(x)) H p/RAA 3. ||F(a) ^ G(a) H p/EE 4. ||F(a)  ~G(a) 1 EU 5. ||F(a) 3 ^E 6. ||~G(a) 4,5 MP 7. ||G(a) ^E 8. ||P ^ ~P 6,7 CONTRAD 9. |P ^ ~P 2,3-8 EE 10. ~x (F(x) ^ G(x)) 2-9 RAA


Carregar ppt "Lógica de 1a Ordem Introdução"

Apresentações semelhantes


Anúncios Google