A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

CORRELAÇÃO Profª. Sheila Regina Oro. Introdução Correlação: relação entre duas variáveis, determinada numericamente por meio dos coeficientes de correlação.

Apresentações semelhantes


Apresentação em tema: "CORRELAÇÃO Profª. Sheila Regina Oro. Introdução Correlação: relação entre duas variáveis, determinada numericamente por meio dos coeficientes de correlação."— Transcrição da apresentação:

1 CORRELAÇÃO Profª. Sheila Regina Oro

2 Introdução Correlação: relação entre duas variáveis, determinada numericamente por meio dos coeficientes de correlação que representam o grau de associação entre duas variáveis contínuas; Descrição da relação através de uma equação que possa ser usada para se prever o valor de uma variável dado o valor da outra.

3 Introdução Coeficiente de correlação linear ( ou r): medida numérica da força da relação entre duas variáveis que representam dados quantitativos. Relação linear: os pontos do gráfico construído aproximam-se do padrão de uma reta.

4 Correlação É possível ver uma relação entre duas variáveis construindo um diagrama de dispersão.

5 Correlação Diagramas de dispersão

6 Correlação Diagramas de dispersão

7 Correlação Diagramas de dispersão

8 Correlação Diagramas de dispersão

9 Correlação Diagramas de dispersão

10 Correlação Correlação não linear

11 Coeficiente de correlação linear (r) Também conhecido como Coeficiente de Correlação de Pearson Mede a intensidade da relação linear entre os valores quantitativos x e y em uma amostra. r = coeficiente de correlação amostral (estimativa para o verdadeiro valor ) R2 = coeficiente de determinação

12 Inferência sobre Dada uma amostra aleatória de n observações do par de variáveis (X, Y), o coeficiente r, pode ser considerado uma estimativa para o verdadeiro valor É necessário verificar as seguintes hipóteses: H0: ρ = 0 (as variáveis X e Y são não correlacionadas) H1: ρ 0 (as variáveis X e Y são correlacionadas)

13 Coeficiente de correlação linear (r) Arredondamento de r para três casas decimais.

14 Coeficiente de correlação linear (r) Arredondamento de r para três casas decimais.

15 Coeficiente de correlação de Spearman Arredondamento para três casas decimais.

16 Coeficiente de correlação linear (r) Interpretação Se r estiver muito próximo de 0: não há correlação. Se r estiver muito próximo de -1 ou +1: há correlação. Se o valor P calculado é menor ou igual ao nível de significância, concluímos que há uma correlação linear. Caso contrário, não há evidência suficiente para apoiar a conclusão de uma correlação linear.

17 Coeficiente de correlação linear (r) Interpretação

18 Coeficiente de correlação linear (r) Exemplo 1: Usando a amostra aleatória simples de dados a seguir, ache o valor do coeficiente de correlação linear. x3135 y5864


Carregar ppt "CORRELAÇÃO Profª. Sheila Regina Oro. Introdução Correlação: relação entre duas variáveis, determinada numericamente por meio dos coeficientes de correlação."

Apresentações semelhantes


Anúncios Google