A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Diagramas de dispersão n forma gráfica de visualizar uma possível relação entre duas variáveis.

Apresentações semelhantes


Apresentação em tema: "Diagramas de dispersão n forma gráfica de visualizar uma possível relação entre duas variáveis."— Transcrição da apresentação:

1 Diagramas de dispersão n forma gráfica de visualizar uma possível relação entre duas variáveis

2 Diagramas de dispersão

3 Correlação O coeficiente de correlação de Pearson é uma medida da 'qualidade' da aproximação da relação entre duas variáveis por uma recta, ou seja, a correlação mede a 'força' da associação linear entre duas variáveis. r – coeficiente de correlação de Pearson na amostra - coeficiente de correlação de Pearson na população

4 Correlação O coeficiente de correlação de Pearson varia entre -1 e 1. Quanto mais próximo estiver de 1 ou -1, mais forte é a associação linear entre as duas variáveis

5 Correlação No estudo da relação entre o consumo de vegetais e taxa de mortalidade no sexo masculino, obtém-se uma correlação de r = r 2 é interpretado como a percentagem de variação explicada por uma das variáveis em relação à outra. No caso estudado, pode-se dizer que o consumo de vegetais explica 66% (0.814) 2 da mortalidade no sexo masculino.

6 Correlação Não usar o r quando: -há uma relação não linear entre as variáveis -os dados incluem mais de uma observação por indivíduo -há valores extremos -os dados dividem-se em dois subgrupos

7 Regressão linear simples A regressão linear é um modelo matemático usado para estudar a relação entre duas variáveis - uma contínua e outra contínua ou ordinal - e a partir do qual se tenta prever os valores de uma das variáveis em função da outra. No estudo sobre o consumo de vegetais e taxa de mortalidade por cancro do estômago, a situação mais natural é tentar prever qual a taxa de mortalidade (variável dependente) para um determinado consumo de vegetais (variável independente) e não o contrário.

8 Regressão linear simples tx mortalidade = b0 + b1 * consumo de vegetais b0 e b1 são calculados de tal maneira que a soma das distâncias à recta seja a menor possível, ou seja, b0 e b1 são calculados de forma a minimizar a soma das distâncias à recta.

9 Regressão linear simples tx mortalidade = b0 + b1 * consumo de vegetais b0 e b1 são calculados de tal maneira que a soma das distâncias à recta seja a menor possível, ou seja, b0 e b1 são calculados de forma a minimizar a soma das distâncias à recta. tx mortalidade = * consumo de vegetais

10 Regressão linear simples tx mortalidade = b0 + b1 * consumo de vegetais tx mortalidade = * consumo de vegetais B0= = taxa de mortalidade prevista com um consumo nulo de vegetais. B1= = a diminuição (porque o valor de b1 é negativo) prevista da taxa de mortalidade para o aumento de 1 unidade no consumo de vegetais.

11 Regressão linear simples Tabela ANOVA: indicação da quantidade de variação explicada pelo modelo. No caso da taxa de mortalidade do sexo masculino a variação total é de 1036,118. Quando se considera o consumo de vegetais, a variação da mortalidade explicada é de 685,986; que aparece na tabela com a designação de "Regression" (quantidade de variação explicada pelo modelo). O resíduo (350,132) é simplesmente a variação que fica por explicar, ou seja a diferença da variação total e variação explicada.

12 Regressão linear simples O quociente da variação explicada pela variação total 685,986/1036,118=0.66 é a percentagem de variação explicada Como seria de esperar este valor é igual quadrado do coeficiente de correlação (r 2 = 0, = 0,66) que também indica a percentagem de variação explicada.

13 Regressão linear simples Assunções : A variável dependente tem que ser contínua Para cada valor fixo da variável independente, a variável dependente segue uma distribuição normal, e todas estas distribuições normais têm um desvio padrão igual Como verificar? Para cada observação x, chama-se resido ao valor observado de y menos o valor de y calculado com a equação da recta. Podemos usar os resíduos para testar as assumpções

14 Leituras n Livro: Medical Statistics at a Glance. Aviva Petrie, Caroline Sabin. Blackwell Science Capítulos: 26, 27 e 28 MedStatWeb:http://stat2.med.up.pt Capítulo: Correlação e regressão linear simples


Carregar ppt "Diagramas de dispersão n forma gráfica de visualizar uma possível relação entre duas variáveis."

Apresentações semelhantes


Anúncios Google