A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Material de apoio: movimento oscilatório Uma partícula descreve um movimento oscilatório quando se move periodicamente em torno de uma posição de equilíbrio.

Apresentações semelhantes


Apresentação em tema: "Material de apoio: movimento oscilatório Uma partícula descreve um movimento oscilatório quando se move periodicamente em torno de uma posição de equilíbrio."— Transcrição da apresentação:

1

2 Material de apoio: movimento oscilatório Uma partícula descreve um movimento oscilatório quando se move periodicamente em torno de uma posição de equilíbrio Exemplos: movimento pendular movimento de uma mola vibração dos átomos numa molécula vibração do campo electromagnético numa onda electromagnética … Movimento Harmónico Simples (MHS) movimento oscilatório mais simpes consitui uma descrição bastante precisa de muitos fenómenos oscilatórios

3 Material de apoio: movimento oscilatório Uma partícula tem um MHS ao longo do eixo dos xx, quando o seu deslocamento relativamente à origem do eixo é dada por - fase da onda - fase inicial da onda A – amplitude do movimento: deslocamento máximo para a direita e para a esquerda da origem do eixo – posição de equilíbrio movimento oscilatório em torno de x=0, a posição de equilíbrio

4 Material de apoio: movimento oscilatório T – período do movimento: intervalo de tempo mínimo ao fim do qual x(t) repete o seu valor w – frequência angular f – frequência: número de reptições na unidade de tempo: Notas: 1 - o movimento pode igualmente ser descrito através da função seno, igual à função cosseno com um desfasamento de /2, implicando apenas um ajuste na fase inicial 2 – a frequência angular, w, só é igual à velocidade angular, w, quando esta é constante período da função cosseno

5 Material de apoio: movimento oscilatório Velocidade de uma partícula com MHS ao longo do eixo dos xx varia periòdicamente, com a mesma frequência angular, entre os valores wA e -wA Aceleração de uma partícula com MHS ao longo do eixo dos xx aceleração é proporcional ao deslocamento; varia periòdicamente, com a mesma frequência angular, entre os valores wA e -wA

6 Material de apoio: movimento oscilatório em oposição de fase

7 Material de apoio: movimento oscilatório amplitude, frequência angular e condições iniciais condições iniciais equação do movimento cuja solução é portanto

8 x(t) pode ser interpretado como a componente x de um vector de norma igual à amplitude: que roda com velocidade angular igual à frequência angular do MHS: Material de apoio: movimento oscilatório

9 Composição, ou sobreposição de dois MHS Mesma direcção e mesma frequência diferença de fase dos dois MHS: independente do tempo

10 Material de apoio: movimento oscilatório Composição, ou sobreposição de dois MHS Mesma direcção e mesma frequência: casos especiais dois MHS em fase: interferência construtiva

11 Material de apoio: movimento oscilatório Composição, ou sobreposição de dois MHS Mesma direcção e mesma frequência: casos especiais dois MHS em oposição de fase: interferência destrutiva

12 Material de apoio: movimento oscilatório Composição, ou sobreposição de dois MHS Mesma direcção e frequências diferentes diferença de fase dos dois MHS: amplitude depende do tempo, oscila entre e

13 Material de apoio: movimento oscilatório Composição, ou sobreposição de dois MHS Mesma direcção e frequências diferentes e amplitudes iguais amplitude modulada pela frequencia w 2 -w 1

14 Composição, ou sobreposição de dois MHS Direcções ortogonais exemplo: movimento plano de uma partícula com as coordenadas x e y animadas de MHS Material de apoio: movimento oscilatório extremidade descreve linha, trajectória, confinada pelas rectas x=±A e y=±B a forma da linha depende da razão w 1 /w 2 e de esta linha genérica tem o nome de Figura de Lissajous

15 Composição, ou sobreposição de dois MHS Direcções ortogonais Caso especial: Material de apoio: movimento oscilatório trajectória descrita sobre a recta y=B/Ax posição sobre esta recta pode ser descrita por oscilação, sobre a recta y=B/Ax, em torno da origem com w distância à origem

16 Composição, ou sobreposição de dois MHS Direcções ortogonais Caso especial: Material de apoio: movimento oscilatório trajectória descrita sobre a recta y=-B/Ax posição sobre esta recta pode ser descrita por oscilação, sobre a recta y=-B/Ax, em torno da origem com w distância à origem

17 Composição, ou sobreposição de dois MHS Direcções ortogonais caso especial: Material de apoio: movimento oscilatório equação de uma elipse de semieixos A e B se A=B, a trajectória é circular

18 Material de apoio: movimento oscilatório MHS -partícula de massa m presa à extremidade de uma mola força da mola é proporcional, e opõe-se, à sua deformação: força elástica deformação da mola no instante de tempo t : x(t) - x 0 posição de não deformação: posição de equilíbrio

19 Material de apoio: movimento oscilatório MHS -partícula de massa m presa à extremidade de uma mola massa oscila em torno de x 0 com frequência angularamplitudecondições iniciais

20 Material de apoio: movimento oscilatório MHS -partícula de massa m presa à extremidade de uma mola força elástica é conservativa deriva de energia potencial energia mecânica conserva-se

21 Material de apoio: movimento oscilatório MHS -partícula de massa m presa à extremidade de uma mola sob acção do campo gravítico situação de equilíbrio condição de equilíbrio situação de oscilação posição de não deformação posição de equilíbrio

22 Material de apoio: movimento oscilatório MHS -partícula de massa m presa à extremidade de uma mola sob acção do campo gravítico forças elástica e gravítica conservativas situação de oscilação elástica gravítica derivam de energias potenciais

23 Material de apoio: movimento oscilatório MHS: pêndulo de massa pontual m regime das pequenas oscilações amplitude frequência angular

24 Material de apoio: movimento oscilatório MHS: pêndulo de massa pontual m regime das pequenas oscilações tensão: ortogonal ao deslocamento não realiza trabalho peso: força conservativa deriva de eergia potencial energia mecânica conserva-se

25 Material de apoio: movimento oscilatório MHS: pêndulo de massa extensa m regime das pequenas oscilações momentos calculados relativamente a O massa roda em sentido retrágrado (movimento descendente) em torno do eixo dos zz perpendicular ao plano formado por e, e que passa por O: eixo de simetria vectores paralelos se a massa for pontual

26 Material de apoio: movimento oscilatório Oscilações Amortecidas: presença de uma força resistiva fraca exemplo – efeito do ar termo de amortecimento amplitude tende exponencialmente para zero: movimento oscilatório não periódico força resistiva opõe-se ao movimento realiza trabalho negativo corpo perde energia mecânica

27 Material de apoio: movimento oscilatório Oscilações Amortecidas: presença de uma força resistiva fraca exemplo – efeito do ar termo de amortecimento amplitude tende exponencialmente para zero: movimento oscilatório não periódico força resistiva opõe-se ao movimento realiza trabalho negativo corpo perde energia mecânica

28 Material de apoio: movimento oscilatório Oscilações Forçadas força resistiva opõe-se ao movimento realiza trabalho negativo sistema perde energia mecânica amplitude do movimento tende exponencialmente para zero perda da amplitude pode ser compensada pela aplicação de uma força periódica,, que contrarie a força resistiva, também periódica porque proporcional à velocidade forneça sustentadamente energia ao sistema termo de amortecimento termo elástico termo forçado

29 Material de apoio: movimento oscilatório Oscilações Forçadas ao fim de um certo intervalo de tempo, o sistema estabiliza: em cada ciclo a energia perdida, por acção de, iguala a energia fornecida por sistema entra em regime estável e oscila forçadamente com amplitude constante e a frequência da força periódica aplicada frequência natural do oscilador frequência forçada amplitude forçada intensidade da força aplicada

30 Material de apoio: movimento oscilatório Oscilações Forçadas fenómeno ressonante mesmo para uma intensidade fraca da força aplicada, a amplitude pode assumir valores muitos elevados quando b é pequeno – força resistiva de fraca intensidade w f ~ w 0 – frequência forçada muito próxima da frequência natural b grande b pequeno b ~ 0


Carregar ppt "Material de apoio: movimento oscilatório Uma partícula descreve um movimento oscilatório quando se move periodicamente em torno de uma posição de equilíbrio."

Apresentações semelhantes


Anúncios Google