A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

REA.4.1.3-Transformações de Lorentz - aplicações Exemplo 1: A simetria da dilatação JZ L MA L Em cada uma das naves cada passageiro possui um relógio de.

Apresentações semelhantes


Apresentação em tema: "REA.4.1.3-Transformações de Lorentz - aplicações Exemplo 1: A simetria da dilatação JZ L MA L Em cada uma das naves cada passageiro possui um relógio de."— Transcrição da apresentação:

1 REA Transformações de Lorentz - aplicações Exemplo 1: A simetria da dilatação JZ L MA L Em cada uma das naves cada passageiro possui um relógio de duas faces e, em cada uma das naves estão sincronizados entre si. Os passageiros estão dispostos de modo que, no referencial de Maria, tanto a distância entre Ana e Maria como a distância entre João e Zé são iguais a L (fig. 1) Fig. 1 – As duas naves vistas no referencial de Maria

2 Dados: no referencial de Maria, os passageiros estão dispostos de tal forma que, tanto a distância entre Zé e João e Maria e Ana é igual a L; v = 3c/5; e L = 1,8 x 10 9 m Evento de referência: encontro de João e Ana Maria: (0, 0, 0; 0) João : (0, 0, 0; 0) Evento a: encontro da Maria com o João Maria: (0, L, 0; t a M ) João : (0, 0, 0; t a J ) Evento b: encontro da Ana com Zé Maria: (0, 0, 0; t b M ) João : (x b J, y b J, z b J ; t b J )

3

4

5

6 ANA JOÃO 00,0 ANA ZÉ 10,0 12,5 (a) Evento de referênciaEvento b (b) vv Fig.-2: as fotos da Ana ANA JOÃO 00,0 MARIA JOÃO 10,0 08,0 (a) Evento de referênciaEvento a (b) v v Fig.-3: as fotos de João

7 J v Exemplo 2: régua contraída Dados: régua de comprimento λ= 1m, no referencial do João; v=4c/5 M Fig.-4: O problema visto no referencial de Maria

8

9

10

11 Exemplo 3: o problema dos dardosDados: João viajando num trem de madeira com velocidade v = 3c/5; Maria na plataforma, com dois lançadores de dardos separados pela distância L M = 10 m. O propósito desse exemplo é obter a distância entre os dardos no referencial do trem e discutir as explicações dos acontecimentos nos dois referenciais. J LMLM (a) (b) J

12 João volta à estação para comparar a distância entre os dardos LMLM (a) (b) J

13 evento a, de referência – disparo do dardo a: Maria: (0, 0, 0; 0) João : (0, 0, 0; 0) evento b, disparo do dardo b Maria: (0, L, 0; 0) João : (x b J, y b J, z b J ; t b J ) As coordenadas do evento b no referencial de João são obtidas usando-se as transformações de Lorentz: (x b J, y b J, z b J ; t b J ) = ( 0, γL, 0; -γLv/c 2 ) (15) A distância entre os dardos, no trem, é dada por L J = y b J – y a J = γL M Usando os dados do problema temos: L J = 12,5 m Maria pode compreender a discrepância entre as distâncias dos lançadores recorrendo à noção de contração do espaço. João explica a diferença entre as 2 distâncias observando que os dois dardos não atingem o trem simultaneamente. t b J = t b J – t a J = -γvL/c 2, sendo que o sinal (-) indica que o evento b ocorreu antes do evento a.

14 Cálculos

15 LTLT J (b) LTLT J (a) dJdJ Fig. -7: os eventos no referencial de João, onde o trem não se move

16 Resumo Usando os dados do problema, a explicação de João para os seus 12,5 m contra os 10m de Maria é a seguinte: Para João os 10m de Maria aparecem contraídos para 8m, além disso os disparos dos dois dardos não são simultâneos, e a estação se move 4,5 m durante esse tempo. Logo os seus 12,5m são iguais a 8m mais 4,5m. Neste exemplo podemos ver claramente o primeiro princípio da relatividade em ação: os dois observadores, João e Maria são indistinguíveis. Por isso, qualquer um deles é capaz de explicar satisfatoriamente a relação entre os dois eventos. Entretanto, cada observador produz uma observação apropriada ao seu ponto de vista.

17 DE Fig.-8a: relógios dispostos ao longo de um trem Fig.-8b: fotos dos trens que se cruzam Exemplo 4: Simultaneidade L AB

18

19 Causalidade Os resultados discutidos no último exemplo podem nos colocar em uma posição desconfortável: a ordem dos eventos pode ser invertida somente pelo fato de invertermos o sentido do nosso caminhar ???? Isto não acontece. A Relatividade mantém a noção de causalidade. Na teoria da Relatividade causas e efeitos podem estar relacionados apenas por trocas de informações que se propaguem com velocidades menores ou iguais à da luz. No problema, anterior o raio de luz não viaja com velocidade suficientemente grande para que a fotos no ponto A possam influenciar as fotos no ponto B.

20 Causalidade - continuação A simultaneidade dessas fotos no referencial da Terra pode ser considerada uma espécie de coincidência. É por isso que a ordem delas pode ser alterada por uma mudança de referencial. Por outro lado, eventos que ocorrem no mesmo ponto do espaço, nunca podem ter a sua ordem invertida, pois para esses eventos a ordem de causalidade pode ser bem definida. Mesmo na relatividade, o pintinho nunca poderia ter nascido antes que a galinha.

21 Paradoxo dos gêmeos L SPR v D E -v Fig. -9: Vista dos dois trens, no referencial da Terra.

22 Evento a: de referência – Maria pula para o trem D Terra: Trem D: Trem E: Evento b: Maria chega a R e entra no trem E Terra: Trem D: Trem E: Evento c: Maria chega a São Paulo Terra: Trem D: Trem E: Observação: o resultado (x c E, y c E, z c E ) = (x b E, y b E, z b E ) é razoável, indicando que Maria não se moveu no referencial E, durante a viagem de volta. (0, 0, 0; 0) (0, L, 0; L/v) (0, 0, 0; 2L/v)

23 Como o tempo de vida de uma pessoa é determinado pelo relógio que ela carrega, Joana ficou, de fato, mais velha que Maria. Existe uma assimetria real e concreta entre os tempos decorridos nas vidas das duas, que se deve ao fato de Maria ter sofrido uma aceleração necessária para ela poder sair e voltar para São Paulo.


Carregar ppt "REA.4.1.3-Transformações de Lorentz - aplicações Exemplo 1: A simetria da dilatação JZ L MA L Em cada uma das naves cada passageiro possui um relógio de."

Apresentações semelhantes


Anúncios Google