A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Introdução ao ensino das funções: Gráficos Autores: Rosana Maria Mendes Karine Angélica de Deus Iara Letícia Leite de Oliveira Simone Uchôas Guimarães.

Apresentações semelhantes


Apresentação em tema: "Introdução ao ensino das funções: Gráficos Autores: Rosana Maria Mendes Karine Angélica de Deus Iara Letícia Leite de Oliveira Simone Uchôas Guimarães."— Transcrição da apresentação:

1 Introdução ao ensino das funções: Gráficos Autores: Rosana Maria Mendes Karine Angélica de Deus Iara Letícia Leite de Oliveira Simone Uchôas Guimarães Ricardo de Almeida Souza Colaborador: José Antônio Araújo Andrade

2 O recurso gráfico é muito utilizado para representar relações entre grandezas.

3 Para construirmos gráficos utilizamos o sistema cartesiano ortogonal.

4 Eixo das abscissas Para construirmos gráficos utilizamos o sistema cartesiano ortogonal.

5 Eixo das ordenadas Para construirmos gráficos utilizamos o sistema cartesiano ortogonal.

6 O gráfico de uma função é o conjunto de todos os pares ordenados (x, y) onde x pertence D e y pertence a Im. (x, y) Chamamos de par ordenado porque a ordem deles é importante. É lido na reta graduada horizontal, ou seja, no eixo das abscissas. É lido na reta graduada vertical, ou seja, no eixo das ordenadas.

7 Exemplo 1 Construir o gráfico da função, dada por, onde. xf(x) = x+2(x,y)

8 Exemplo 2 Construir o gráfico da função, dada por

9

10 Para isso basta termos em mente que: Uma relação será uma função se todos elementos do domínio tiver um único correspondente no contradomínio, ou seja, a imagem. Podemos observar um gráfico e identificar se ele representa ou não uma função.

11 Considerando que o D(f)= R e CD(f)=R então analisemos alguns gráficos: Cada elemento do domínio possui uma única imagem. Logo, esse gráfico representa uma função.

12 Há um elemento no domínio, x = 3, que não possui uma imagem. Logo, o gráfico não representa uma função.

13 Existem elementos no domínio que possuem mais de um correspondente no contradomínio. Logo, o gráfico não representa uma função

14 Representa uma função pois, cada elemento do domínio possui uma única imagem.

15

16 As ordenadas desses pontos são o 0, 1, 2, 3 e 4, logo, a Im(f) = {0, 1, 2, 3, 4}. As abscissas desses pontos são o {-2, -1, 0, 1, 2 e 3}. Logo, o D(f) = {-2, -1, 0, 1, 2, 3}. O gráfico é constituído por seis pontos.

17

18


Carregar ppt "Introdução ao ensino das funções: Gráficos Autores: Rosana Maria Mendes Karine Angélica de Deus Iara Letícia Leite de Oliveira Simone Uchôas Guimarães."

Apresentações semelhantes


Anúncios Google