A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

"CURSO DE AVALIAÇÃO S0CIOECONÔMICA DE PROJETOS" BRASÍLIA BRASIL CLAUDIA NERINA BOTTEON Maio - 2009.

Apresentações semelhantes


Apresentação em tema: ""CURSO DE AVALIAÇÃO S0CIOECONÔMICA DE PROJETOS" BRASÍLIA BRASIL CLAUDIA NERINA BOTTEON Maio - 2009."— Transcrição da apresentação:

1 "CURSO DE AVALIAÇÃO S0CIOECONÔMICA DE PROJETOS" BRASÍLIA BRASIL CLAUDIA NERINA BOTTEON Maio

2 CONCEITOS BÁSICOS DE MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Valor do dinheiro ao longo do tempo. Juros e taxas de juros. Valores atuais e futuros num único valor monetário e de uma série de valores iguais ou diferentes.

3 MOMENTO Y PERÍODO Momento: INSTANTE no tempo (exemplo: 30 de Julio de 2003) Período: tempo decorrido entre dois momentos do projeto (exemplo: 30/7 á 30/8 de 2003) Fluxo mensal Momento 0Momento 2Momento 1Momento n Segundo mêsPrimeiro mês

4 VALOR DO DINHEIRO AO LONGO DO TEMPO IDEIA CENTRAL: O valor atribuído a um real hoje é maior que o valor dado a um real disponível no futuro. Não é o mesmo: R$ 100 hojePromessa de R$ 100 num mês CAUSAS DESTA DIFERENÇA: Impaciência Risco Oportunidades de investimento

5 CONCEITO DE JUROS O QUÉ É JUROS? Os juros é esse adicional que se pode obter se o dinheiro for aplicado numa alternativa de investimento. TAXA DE JUROS É uma forma de medir qual porcentagem representa os juros em relação ao capital investido. Por exemplo: Invisto R$ Obtenho: R$ 60 Taxa: 60/1.000 = 0,06 = 6% Importante: definir bem o período

6 JUROS SIMPLES E COMPOSTOS 1. JUROS SIMPLES Os juros se recebem sobre o capital investido originalmente. Suposto: os juros são retirands em cada período. Exemplo numérico:Se toma emprestado R$ para ser devolvido em três anos, a juros simples. Taxa anual de juros: 10%

7 Capital inicial (A) = Capital final ou valor ou montante total (MT) = Juros totais (IT) = MT – A = 300 Forma de calcular o IT: 300 = ,10 Fórmula principal IT = A. n. TP Fórmulas derivadas: Montante total: MT = A + IT = A + (A. n. TP) = A. ( 1 + n. TP) Taxa de juros: TP = IT / ( A. n)

8 2. JUROS COMPOSTOS Os juros são recebidos sobre o capital investido originalmente ao qual vão sendo acumulados os juros que se vão ganhando. Suposto: os juros não são retirados em cada período. Exemplo numérico:Se toma emprestado R$ a ser pago em três anos, a juros compostos. Taxa anual de juros: 10% JUROS SIMPLES E COMPOSTOS

9 Capital inicial (A) = Capital final ou valor ou MONTANTE TOTAL (MT) = Juros totais (IT) = MT – A = 331 Forma de calcular o MT: = (1+ 0,10). (1+ 0,10). (1+ 0,10) = (1+ 0,10) 3 Fórmula principal MT = A. ( 1 + i ) n

10 Fórmulas derivadas: Juros totais: IT = MT - A = A. (1+i) n - A = A. [(1+i) n – 1] Capital inicial: A = MT / (1+i) n Taxa de juros: i = (MT / A) (1/n) - 1 NA AVALIAÇÃO DE PROJETOS: Utiliza-se sempre JUROS COMPOSTOS O capital inicial (A) é denominado de VALOR PRESENTE (VP) O montante total (MT)é denominado de VALOR FUTURO (VF) Portanto, centramos a atenção em duas fórmulas: VF = VP. (1+i) n VP = VF / (1+i) n

11 EQUIVALÊNCIA DAS TAXAS DE JUROS 1. TAXAS PROPORCIONAIS Duas taxas de juros são proporcionais quando estando referidas a períodos de tempo diferentes, aplicadas sobre um mesmo capital inicial e se capitalizado a juros simples produzem o mesmo montante total em igual lapso de tempo. Utilizando o exemplo anterior (juros simples) Taxa 10% anual: MT = ( ,10 ) = Taxa 30% de 3 anos: MT = ( ,30 ) = No mesmo lapso (três anos) produzem o mesmo montante total. Pelo tanto, estas duas taxas são proporcionais.

12 Como se obtém outras taxas proporcionais a estas duas? Supõe-se que se deseja obter uma taxa proporcional semestral à taxa mensal de 1%. O procedimento tem três etapas: Primeira etapa: igualização do prazo Neste caso, o prazo se iguala em seis meses. A taxa mensal é capitalizada seis vezes e a taxa semestral uma vez. Segunda etapa: cálculo do MT em cada caso Mensal:MT = A. ( 1 + 0,01. 6 ) Semestral:MT = A. ( 1 + TP semestral. 1 ) Terceira etapa: igualização dos MT e cálculo da TP A. ( 1 + 0,01. 6 ) = A. ( 1 + TP semestral. 1 ) 1,06 = 1 + TP semestral. 1 (1,6 – 1) = TP semetral = 0,06

13 2. TAXAS EQUIVALENTES As taxas de juros são equivalentes quando são referidas a períodos de tempo diferentes, aplicadas sobre um mesmo capital inicial e capitalizado a juros COMPOSTOS produzem o mesmo montante total em igual lapso de tempo Utilizando o exemplo anterior (juros compostos) Taxa 10% anual: MT = ( 1 + 0,10 ) 3 = Taxa 33,1% três anos: MT = ( 1 + 0,331) = No mesmo lapso (três anos), as taxas produzem o mesmo montante total. Portanto, estas duas taxas são equivalentes.

14 Como se obtém outras taxas equivalentes a estas duas? Supõe-se que se deseja obter una taxa semestral equivalente à taxa mensal de 1%. O procedimento tem três etapas: Primeira etapa: igualização do prazo Neste caso, o prazo se iguala em seis meses. A taxa mensal é capitalizada seis vezes e a taxa semestral uma vez. Segunda etapa: cálculo do MT em cada caso Mensal:MT = A. ( 1 + 0,01) 6 Semestral:MT = A. ( 1 + i semestral ) 1 Terceira etapa: igualização dos MT e cálculo de i ( 1 + 0,01 ) 6 = ( 1 + i semestral ) 1 ( 1, ) - 1 = i semestral i semestral = 0,0615

15 Passar de uma taxa NOMINAL para outra EFETIVA Taxa nominal anual Taxa periódica proporcional Taxa efetiva anual Por proporcionalidade de taxas Por equivalência de taxas Um elemento essencial para poder passar de uma taxa nominal a uma efetiva é a unidade de tempo definida para a capitalização de juros Os resultados são diferentes

16 Passar de uma taxa NOMINAL a outra EFETIVA Exemplo: Taxa nominal anual: 20% Taxa mensal proporcional: TP anual = TP mensal x 12 0,2 / 12 = 0,0167 = TP mensal Taxa efetiva anual:(1 + 0,0167) = TEA 0,2194 = TEA 21,94% > 20% A capitalização é mensal

17 Passar de uma taxa NOMINAL a outra EFETIVA Taxa bimestral proporcional: TP anual = TP bimestral x 6 0,2 / 6 = 0,0333 = TP bimestral Taxa efetiva anual:(1 + 0,0333) = TEA 0,2174 = TEA 21,74% > 20% A TEA resultante com capitalização bimestral é menor que a TEA com capitalização mensal. Isto ocorre pois os juros passam a formar parte do capital a cada período e sobre quais são cobrados novos juros. Exemplo: Taxa nominal anual: 20% A capitalização é bimestral

18 Passar de uma taxa NOMINAL a outra EFETIVA Taxa anual proporcional: TP anual = 20% Taxa efetiva anual:(1 + 0,2) = TEA 0,20 = TEA A TEA é igual a TNA, quando a capitalização é anual. Exemplo: Taxa nominal anual: 20% A capitalização é anual

19 Passar de uma taxa NOMINAL a outra EFETIVA Taxa mensal proporcional: TP mensal = 1% Taxa efetiva bimestral:(1 + 0,01) = i bimestral 0,0201 = i bimestral Exemplo: Taxa nominal anual: 12% A capitalização é mensal Taxa efetiva mensal:(1 + 0,01) - 1 = i mensal 0,01 = i mensal

20 VALORES PRESENTES E VALORES FUTUROS Valor futuro de uma soma presente Valor presente de uma soma futura Valor presente de um plano de prestações futuras diferentes Valor presente de um plano de prestações iguais Valor presente de um plano de prestações crescentes a uma taxa constante

21 1.VALOR FUTURO DE UMA SOMA PRESENTE É o valor que essa soma (presente) terá ao final do tempo, considerando juros compostos. Para efetuar o cálculo é necessário conhecer: A duração total do período A quantidade de vezes que se capitaliza nesse lapso A taxa de juros (coerente com o período de capitalização) Soma presente (R$) Valor Futuro (R$)...JUROS...

22 Fórmula geral a aplicar VF = VP. ( 1 + i ) n Exemplo 1: Qual é o valor futuro de R$ 150 ao final de três meses, se a taxa de juros efetiva mensal é de 2%? VF = 150. ( 1 + 0,02 ) 3 = 159, ,06 159,18 Exemplo 2: Qual é o valor futuro de R$ 150 ao final de três meses, se a taxa de juros efetiva mensal é de 2% durante dois meses e 5% no terceiro? VF = 150. ( 1 + 0,02 ) 2. ( 1 + 0,05 ) = 163,86 Se a taxa de juros muda o durante o lapso considerado, deve-se separar a fórmula geral CAPITALIZAÇÃO

23 Fórmula geral a aplicar VF = VP. ( 1 + i ) n Exemplo 3: Qual é o valor futuro de R$ 100 ao final de 14 meses, se a taxa de juros efetiva semestral é de 10%? O primeiro a fazer é encontrar a taxa efetiva mensal: i mensal = (1,1) (1/6) – 1 = 1,6012% O valor futuro no momento 14 resulta: VF 14 = 100. ( 1,016012) 14 = 124,91

24 2. VALOR PRESENTE DE UMA SOMA FUTURA É o valor que essa soma (futura) terá HOJE. Calcula-se utilizando juros compostos. Para efetuar o cálculo é necessário conhecer: A duração total do período A quantidade de vezes que se capitaliza nesse lapso A taxa de juros (coerente com o período de capitalização) Valor presente (R$) Soma Futura (R$)

25 Fórmula geral a aplicar VP = VF / ( 1 + i ) n Exemplo 1: Qual é o valor presente de R$ 150 a receber dentro de três meses, se a taxa de juros mensal é de 2%? VP = 150 / ( 1 + 0,02 ) 3 = 141,35 141,35144,17147, Exemplo 2: Qual é o valor presente de R$ 150 após três meses, si se estima que a taxa de juros mensal será 2% durante dois meses e 5% no terceiro? VP = 150 / [( 1 + 0,02 ) 2. ( 1 + 0,05) ] = 137,31 Se a taxa de juro muda durante o lapso considerado, deve-se separar a fórmula geral ATUALIZAÇÃO

26 3. VALOR PRESENTE DE FUTURAS E DIFERENTES SOMAS DE DINHEIRO É a soma dos valores presentes de cada soma futura (utilizando juros compostos). SF 1 SF 2 SF 3 SF n VP 1 VP 2 VP 3 VP n... + VP Cada una das somas deve ser ATUALIZADA devidamente

27 Exemplo: Qual é o valor presente das seguintes duas somas a receber no futuro: R$ 200 ao final de 10 meses e R$ 400 ao final de 18 meses? A taxa efetiva mensal: 10% ,149 )10,1( 400 )10,1( 200 )conjunto(VP 1810

28 4.VALOR PRESENTE DE UM PLANO DE PRESTAÇÕES IGUAIS É a soma dos valores presentes de cada prestação (utilizando juros compostos). O que é uma prestação? É uma soma de dinheiro que será paga ou recebida regularmente ao largo do tempo. Devem ser iguais em montante Devem estar uniformemente distribuídas no tempo Tipos de prestações De acordo ao seu número: Denominam-se ANUALIDADES se são prestações finitas Denominam-se PERPETUIDADES se são prestações infinitas De acordo ao momento de pagamento da primeira delas: No principio do período denominam-se ADIANTADAS Ao final do período denominam-se VENCIDAS Em qualquer outro momento, denominam-se DIFERIDAS

29 a) VALOR PRESENTE DE UMA PERPETUIDADE VENCIDA Diminuindo a segunda da primeira:.... )i1( C )i1( C VP °C 2° C.... )i1( C )i1( C C)i1(VP 2 CVP)i1( i C VP

30 b) VALOR PRESENTE DE UMA PERPETUIDADE ADIANTADA É como você atualizar todo o fluxo para o momento –1 e em seguida capitalizar por um período °C 2° C )i1( i C VP

31 Exemplo 1: Qual é o valor presente de um conjunto de infinitas prestações semestrais, iguais, consecutivas e vencidas de R$ 250, calculadas a 10% efetivo semestral? 250 …… Exemplo 2: Qual será o valor de um conjunto de 6 prestações semestrais, se forem adiantadas? 250 ……. 250 VP = 250 / 0,10 = VP = (250 / 0,10). 1,1 = ,1 = 2.750

32 Exemplo 3: Qual é o valor presente de um conjunto de infinitas prestações semestrais, iguais, consecutivas e vencidas de R$ 250, calculadas a 10% efetivo anual? Primeiro: deve-se calcular a taxa efetiva semestral, já que as prestações são semestrais: 4,88% (equivalente à taxa de 10% anual). Logo: a cota VP = 250 / 0,0488 = 5.122,02 Exemplo 4: Qual é o valor presente de um conjunto de infinitas prestações semestrais de R$ 250, se a primeira deve ser paga após 14 meses, calculadas a 10% efetivo anual?

33 c) VALOR PRESENTE DE UMA ANUALIDADE VENCIDA n )i1( C.... )i1( C )i1( C VP 2 1n )i1( C.... )i1( C )i1( C C)i1(VP 2 Diminuindo a segunda da primeira: n )i1( C CVP)i1( i)i1( 1)i1( C )i1( 1 1 i C VP n n n 1° C 2° C Enésima

34 d) VALOR PRESENTE DE UMA ANUALIDADE ADIANTADA Enésima n-1 1°C 2° C )i1( i)i1( 1)i1( C)i1( )i1( 1 1 i C VP n n n

35 Exemplo 1: Qual é o valor presente de um conjunto de 6 prestações semestrais, iguais, consecutivas e vencidas de R$ 250, calculadas a 10% efetivo semestral? 250 Exemplo 2: Qual será o valor de um conjunto de 6 prestações semestrais, se forem adiantadas? , ,0),1( 1),1( 250VP ,197.1)10,1(,0),1( 1),1( 250VP 6 6

36 Exemplo 3: Qual é o valor presente de um conjunto de 6 prestações semestrais, iguais e consecutivas de R$ 250 calculadas a 10% efetivo semestral, se a primeira delas for paga após 2 meses? Exemplo 4: Qual é o valor presente de um conjunto de 6 prestações semestrais, iguais e consecutivas de R$ 250 calculadas a 1% efetivo mensal, se a primeira delas deve ser paga após 12 meses?

37 5. VALOR PRESENTE DE UM PLANO DE PRESTAÇÕES CRESCENTES A UMA TAXA CONSTANTE Taxa constante de crescimento: C é o valor correspondente à primeira prestação/cota. Se o número de prestações for infinito:

38 Exemplo 1: Qual é o valor presente de um conjunto de infinitos benefícios líquidos de transitar, calculadas a 10% efetivo anual? Taxa constante de crescimento: 2% anual Exemplo 2: ¿Qual é o valor presente dos benefícios se seu número for 20?


Carregar ppt ""CURSO DE AVALIAÇÃO S0CIOECONÔMICA DE PROJETOS" BRASÍLIA BRASIL CLAUDIA NERINA BOTTEON Maio - 2009."

Apresentações semelhantes


Anúncios Google