A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Prof. Jorge Teoria dos Conjuntos. Prof. Jorge Conjuntos – Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento,

Apresentações semelhantes


Apresentação em tema: "Prof. Jorge Teoria dos Conjuntos. Prof. Jorge Conjuntos – Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento,"— Transcrição da apresentação:

1 Prof. Jorge Teoria dos Conjuntos

2 Prof. Jorge Conjuntos – Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I.O conjunto dos alunos do 1º ano do Colégio Nóbrega. II. O conjunto de todos os números inteiros. III. O conjunto de todos os números reais que é solução da equação x 2 – 16 = 0. Em geral, utilizamos letras latinas maiúsculas para representar conjuntos. A, B, C,..., Z.

3 Prof. Jorge Conjuntos – Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos – Elemento I.Pedro é um elemento do conjunto dos alunos do 1º ano do Colégio Nóbrega. II. 7 é um elemento do conjunto dos números inteiros. III. +4 é um elemento do conjunto dos números reais que satisfaz à equação x 2 – 16 = 0. Em geral, utilizamos letras latinas minúsculas para representar elementos. a, b, c,..., z.

4 Prof. Jorge Conjuntos – Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos – Pertinência I.Pedro pertence ao conjunto dos alunos do 1º ano do Colégio Nóbrega. II. 7 pertence ao conjunto dos números inteiros. III. +4 pertence ao conjunto dos números reais que satisfaz à equação x 2 – 16 = 0. Utilizamos o símbolo pertence e não pertence para relacionar elemento e conjunto.

5 Prof. Jorge Notações de Conjuntos Um conjunto pode ser representado: Enumerando seus elementos entre chaves, separados por vírgulas; Indicando, entre chaves, uma propriedade que caracterize cada um de seus elementos; Por meio de uma figura fechada, dentro da qual podem-se escrever seus elementos. Diagrama de Venn-Euler.

6 Prof. Jorge Exemplo Representar o conjunto V das vogais. V = {a, e, i, o, u} V = {x; x é vogal} como no diagrama ao lado a e i o u V No caso a V, mas m V.

7 Prof. Jorge Observação Há conjuntos com apenas: Um único elemento, chamados conjuntos unitários; Nenhum elemento, chamados conjunto vazio; Infinitos elementos, chamados conjuntos infinitos. O conjunto vazio pode ser representado pelos símbolos { } e Ø.

8 Prof. Jorge Exemplos A = {x; x é inteiro positivo, par e primo} A = {2} B = {x; x é inteiro, ímpar e divisível por 2} B = { } = Ø C = {a; a é número natural ímpar e primo} C = {3, 5, 7, 11, 13, 17, 19,...}

9 Prof. Jorge Se x A x B Se x B x A Observação Se dois conjuntos possuem exatamente os mesmos elementos (não importando a ordem em que eles aparecem), dizemos que eles são conjuntos iguais. A = {x; x é inteiro positivo e x < 4} B = {2, 3, 1} A = {1, 2, 3} = B. A = B

10 Prof. Jorge Exemplo A = Conjunto das letras da palavra TRATOR B = Conjunto das letras da palavra ATOR A = {t, r, a, o} B = {a, t, o, r} A = B

11 Prof. Jorge Subconjuntos Se todo elemento de um conjunto A é também elemento de um conjunto B, dizemos que: A está contido em B (símbolo: A B); B contém A (símbolo: B A); A é subconjunto de B; A é parte de B. B A

12 Prof. Jorge Exemplo A = {x ; x < 4} B = {x ; x(x – 1) = 0} A = {0, 1, 2, 3}eB = {0, 1} Podemos afirmar que B é um subconjunto de A (B A). A B

13 Prof. Jorge Observação – subconjuntos Se um conjunto A é igual a um conjunto B (A = B), então A B e B A. Se A B, A Ø e A B, dizemos que A é subconjunto próprio de B. O conjunto vazio está contido em qualquer conjunto (Ø A, para todo A) O vazio é subconjunto de qualquer conjunto; Todo conjunto é subconjunto de si mesmo.

14 Prof. Jorge Exemplo Encontrar todos os subconjuntos de A = {1, 2, 3}. Com 0 elemento Ø Com 1 elemento {1}, {2}, {3} Com 2 elementos {1, 2}, {1, 3}, {2, 3} Com 3 elementos {1, 2, 3} Dizemos que Ø e A = {1, 2, 3} são subconjuntos triviais de A. Os outros são os subconjuntos próprios de A.

15 Prof. Jorge Observação – subconjuntos Chamamos de conjunto das partes do conjunto A e representamos por P(A), o conjunto de todos os subconjuntos do conjunto A. Exemplo A = {1, 2, 3} Subconjuntos de A: Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} P(A) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} n(P(A)) = 2 n(A)

16 Prof. Jorge Exemplo Se um conjunto A tem n elementos e 128 subconjuntos, quantos elementos possui o conjunto A? 2 n = n = 2 7 n = 7 Logo, o conjunto A tem 7 elementos.

17 Prof. Jorge Operações com Conjuntos

18 Prof. Jorge Operações com Conjuntos A partir de dois conjuntos conhecidos, A e B, podemos obter outros conjuntos, operando com os conjuntos dados. Definimos as operações a seguir: I.União; II.Interseção; III.Diferença;

19 Prof. Jorge União dos Conjuntos A e B (A B) É o conjunto dos elementos que pertencem ou a A, ou a B ou a ambos os conjuntos. A B = {x; x A ou x B} BA Podemos generaliza a operação união para três ou mais conjuntos.

20 Prof. Jorge Exemplo Dados os conjuntos A = {0, 1, 2, 3, 4}, B = {1, 3, 5, 7} e C = {5, 6, 7, 8, 9}, vamos obter: a) A B. b) A B C. a) A B ={0, 1, 2, 3, 4, 5, 7} b) A B C ={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} No caso de três ou mais conjuntos, podemos escrever A B C = (A B) C = A (B C).

21 Prof. Jorge Interseção dos Conjuntos A e B (A B) É o conjunto dos elementos que pertencem a A e B. A B = {x; x A e x B} BA Também a operação interseção pode ser generalizada para três ou mais conjuntos.

22 Prof. Jorge Exemplo Dados os conjuntos A = {0, 1, 5}, B = {0, 2, 5, 7}, C = {4, 6, 7, 9} e D = {0, 1, 6}, vamos obter: a) A B. b) A C. c) A B D. a) A B ={0, 5} b) A C =ØLogo, A e C são disjuntos c) A B D ={0}

23 Prof. Jorge Diferença dos Conjuntos A e B (A – B e B – A ) É o conjunto dos elementos que pertencem ao primeiro conjunto, mas não pertencem ao segundo. A – B = {x; x A e x B} BA

24 Prof. Jorge Diferença dos Conjuntos A e B (A – B e B – A ) É o conjunto dos elementos que pertencem ao primeiro conjunto, mas não pertencem ao segundo. B – A = {x; x B e x A} BA

25 Prof. Jorge Exemplos Dados os conjuntos A = {1, 2, 3, 4, 5}, B = {2, 4, 6}, vamos obter: a) A – B. b) B – A. a) A – B ={1, 2, 3, 4, 5} – {2, 4, 6} = b) B – A ={2, 4, 6} – {1, 2, 3, 4, 5} = Em geral A – B B – A. {1, 3, 5} {6}

26 Prof. Jorge Exemplos Se A = {x natural, menor que 10 / x é par} e B = {x natural, menor que 10 / x é primo}. Determine A B, A B, A – B e B – A. A = {0, 2, 4, 6, 8}B = {2, 3, 5, 7} A B = {0, 2, 3, 4, 5, 6, 7, 8} A B = {2} BA A – B = {0, 4, 6, 8} B – A = {3, 5, 7}

27 Prof. Jorge Complemento de um Conjunto No caso em que o conjunto B está contido no conjunto A (B A), a diferença A – B pode ser chamada, também, complementar de B em relação a A ( A B). B A A – B = A B A B A – B O complementar de A em relação a um dado universo pode ser representado, simplesmente por A.

28 Prof. Jorge Exemplos Dados os conjuntos X = {1, 2, 4}, Y = {1, 2, 3, 4, 5}, X Y. O bter Y X. Y X = Y – X = {1, 2, 3, 4, 5} – {1, 2, 4} ={3, 5} Se A = {x ; x > 2}, A está contido no universo. Obter A. A = A = {x ; x 2}

29 Prof. Jorge Exemplos Se A = {a, b, c, d, e} e B = {d, e, f, g} estão contidos no universo U = {a, b, c, d, e, f, g, h}, determinar o conjunto A B. A = U – A = {f, g, h} A B = {f, g, h} {d, e, f, g} ={f, g}

30 Prof. Jorge Número de elementos da união de conjuntos

31 Prof. Jorge Número de elementos da união de conjuntos Existe uma relação importante que envolve a quantidade de elementos dos seguintes conjuntos finitos: A, B, A B e A B. Observe: n(A B) = n(A) + n(B) – n(A B) n(A B) = número de elementos da união n(A) = número de elementos do conjunto A n(B) = número de elementos do conjunto B n(A B) = número de elementos da interseção

32 Prof. Jorge Exemplos Sejam A = {1, 2, 3, 4, 5, 6} e B = {4, 5, 6, 7, 8}, temos: A B = {1, 2, 3, 4, 5, 6, 7, 8} A B = {4, 5, 6} Podemos comprovar que: n(A B) = n(A) + n(B) – n(A B) 8 = – 3 BA

33 Prof. Jorge Exemplos O conjunto A tem 8 elementos; o conjunto B, 13 elementos; o conjunto A B, 5 elementos. Determinar o número de elementos do conjunto A B. BA 58 – 5 = 313 – 5 = 8 n(A B) = = 16 (A – B)(B – A) A B

34 Prof. Jorge Exemplos Numa turma de 42 alunos, o professor perguntou: Quem é torcedor do Grêmio? 36 levantaram o braço. A seguir, perguntou: Quem é nascido em Porto Alegre? 28 levantaram o braço. Sabendo que nenhum aluno deixou de levantar o braço, vamos determinar quantos alunos são gremistas e Porto- alegrenses. PG x36 – x28 – x 36 – x + x + 28 – x = 42 (G – P) G P 64 – x = 42 x = 22


Carregar ppt "Prof. Jorge Teoria dos Conjuntos. Prof. Jorge Conjuntos – Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento,"

Apresentações semelhantes


Anúncios Google