A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

1 Fenômenos de Transporte INTRODUÇÃO AOS FLUIDOS EM MOVIMENTO.

Apresentações semelhantes


Apresentação em tema: "1 Fenômenos de Transporte INTRODUÇÃO AOS FLUIDOS EM MOVIMENTO."— Transcrição da apresentação:

1 1 Fenômenos de Transporte INTRODUÇÃO AOS FLUIDOS EM MOVIMENTO

2 2 Fenômenos de Transporte 1. Velocidade do fluido Em primeiro lugar entre as propriedades de um escoamento, está velocidade que variando numa região do espaço define um campo de velocidades. De maneira geral, determinar o campo de velocidades de um escoamento significa resolver o problema de escoamento. Na descrição da velocidade de um fluido pode-se pensar em uma pequena massa de fluido que ocupa um pequeno volume V que se move com o escoamento. Assim é possível descrever o movimento das partículas focalizado o movimento das partículas individuais e estudar como a sua posição varia com o tempo.

3 3 1.Velocidade do fluido Descrição Lagrangeana (Joseph L. langrange – ): Fenômenos de Transporte É possível também descrever o movimento das partículas acompanhando como varia a velocidade em uma determinada região do espaço. ou Se a velocidade não depende do tempo A região onde varia a velocidade varia é o campo de velocidades Campos de escoamento: região do espaço de interesse do escoamento e na qual uma determinada propriedade está sendo considerada.

4 4 Em alguns livros, por tradição, usa-se de u, v e w em substituição a v x, v y e v z, se dá por motivos históricos. Descrição Euleriana – Ref. Euleriano ( Leonhard Euler 1707 –1783) 1. Velocidade do fluido Fenômenos de Transporte

5 5 1. Velocidade do fluido Exercício 1 a) u?;v?;w=?V(0,0); v(1,-2); b) u?;v?;w=?V(0,0); v(1,-2); c) u?;v?;w=?V(0,0,0,t=0s); v(1,-2,1,t=2s); Fenômenos de Transporte d)

6 6 2.Tipos de escoamento em função da velocidade Unidimensional Fenômenos de Transporte Bidimensional Tridimensional

7 Regime transiente (não estacionário ) Regime permanente ( estado estacionário) Fenômenos de Transporte

8 8 3.Velocidade do fluido. Linha de Corrente Fenômenos de Transporte Linhas de corrente. É uma linha imaginaria que define o lugar geométrico da tangentes às velocidades de escoamento. Produto vetorial (VxdS)= 0

9 9 3. Linha de corrente. Exercício 2. O campo de velocidade para um escoamento é dado pela expressão: v = 2xi-ytj (m/s), com x e y dados em metros e t segundos. Determinar a linha de corrente que passa pelo ponto( 2,-1) quando t = 4s. Fenômenos de Transporte

10 10 u v v = 2xi-4yjt =4 s u v OBS 1. Linha de corrente 3. Linha de corrente.

11 11 4. Velocidade, velocidade média e vazão de um fluido. Quanto sai de fluido por um tubo de secção A? Depende da velocidade de escoamento e da área da seção transversal do tubo Velocidade média numa secção Vazão mássica de uma secção Vazão numa secção

12 12 Exercício 3. Sabendo-se que o perfil de velocidade de água escoando num tubo, calcular a velocidade média do escoamento. 4. Velocidade, velocidade média e vazão de um fluido.

13 Exercício 4. Água flui por com velocidade uniforme de 3 m/s por dentro de um bocal que tem diâmetro de 10 cm. Calcular a vazão volumétrica e mássica na saída desse bocal. 4. Velocidade, velocidade média e vazão de um fluido.

14 14 5. Escoamento laminar e turbulento laminar turbulento mantém-se linhas de corrente;não existe passagem de partíclas de uma camada para outra. O movimento das partículas ocorre de forma irregular e aleatório, ocorre mistura de partículas no fluido. Fenômenos de Transporte

15 15 No. de Reynolds ( Osborne Reynolds – ) Placa: V e l Tubos: Vmédia> e D Esferas: V b e D Re crítico = Re c Laminar Re < Rec Turbulento Re > Rec Tubos rugosos Rec= 2100 Placa plana rugosos Rec = Esferas rugosos Rec= 0,1 Fenômenos de Transporte 5. Escoamento laminar e turbulento

16 16 Exercício 5 Água ; duto D = 1 in. Qual vmax para haver regime laminar? Fenômenos de Transporte Água ; duto D = 1 in. Se v mdia for 2,5 m/s qual o regime de escoamento? 5. Escoamento laminar e turbulento

17 17 6. Aceleração convectiva, local e material Derivada substancial ou material (derivada de uma prop. do sistema) Aceleração convectiva Aceleração local Fenômenos de Transporte

18 18 6. Aceleração convectiva, local e material

19 19 6. Aceleração convectiva, local e material

20 20 Exercício 6: a) b) c) a(0,0,0); a(1,-2,1) a(0,0,0,t=0s); a(1,-2,1,t=2s) d) Fenômenos de Transporte 6. Aceleração

21 21 em C Fenômenos de Transporte 6. Aceleração Exercício 7:

22 22 7. Tipos de movimento de um fluido Translação Vetor Taxa de translação Rotação

23

24 24 Rotação 7. Tipos de movimento de um fluido

25 Rotação

26 7. Tipos de movimento de um fluido Vetor Taxa de rotação Vetor vorticidade Vetor vorticidade escoamento bidimensional

27 27 Deforma ç ão linear Taxa de deformação linear Vetor taxa de deformação volumétrica 7. Tipos de movimento de um fluido

28 28 Deformação por cisalhamento Fenômenos de Transporte 7. Tipos de movimento de um fluido

29 29 Fenômenos de Transporte Deformação por cisalhamento 7. Tipos de movimento de um fluido

30 30 Fenômenos de Transporte 7. Tipos de movimento de um fluido Deformação por cisalhamento

31 31 Tensor das taxas de deformação Fenômenos de Transporte y x z 7. Tipos de movimento de um fluido

32 Tensor das tensões

33 33 Força de pressão em um elemento fluido Pressão não causa nenhuma força líquida sobre um elemento fluido a menos que varie espacialmente. Fenômenos de Transporte 8. Equação do movimento para fluidos.

34 34 Sendo f a força líquida por elemento de volume: O gradiente de pressão representa uma força de superfície que atua sobre os lados do elemento. Fenômenos de Transporte Força de pressão em um elemento fluido 8. Equação do movimento para fluidos.

35 35 Pode haver uma força de campo agindo sobre toda a massa do elemento. A força da gravidade não pode ser desconsiderada. Fenômenos de Transporte 8. Equação do movimento para fluidos.

36 36 Forças viscosas. Em geral, deve haver uma força de superfície devido ao gradiente de tensões viscosas. Pode ser demonstrado que Fenômenos de Transporte 8. Equação do movimento para fluidos.

37 37 O vetor resultante das forças de pressão, da gravidade e das forças viscosas causa um movimento com aceleração a. Reescrevendo esta equação, tem-se : Da segunda lei de Newton: Fenômenos de Transporte 8. Equação do movimento para fluidos.

38 38 A. Fluido em repouso ou com velocidade constante (condição hidrostática) v=cte a=0. Termos aceleração e viscosos são nulos. A pressão depende apenas da gravidade e da massa específica. B. Translação de corpo rígido( não há movimento relativo). Termos viscosos nulos. A pressão depende apenas da aceleração, da aceleração da gravidade, e da massa específica. Examinando esta equação, pode-se destacar alguns casos especiais: Fenômenos de Transporte 8. Equação do movimento para fluidos.

39 39 C. Escoamento não viscoso. Termos viscosos nulos. A pressão depende apenas da aceleração, da aceleração da gravidade, e da massa específica. 0 Fenômenos de Transporte Escoamento viscoso e não viscoso Não-viscoso: quando em relação a outros fatores, os efeitos dissipativos não são importantes. 8. Equação do movimento para fluidos.

40 40 Foi enunciada em 1738 por Daniel Bernoulli e deduzida em 1755 por Euler. Para um escoamento permanente, não-viscoso, incompressível ao longo de uma linha de corrente, tem-se: 8. A equação de Bernoulli

41 41 Balanço de forças atuando no elemento de fluido ap longo de uma linha de corrente 8. A equação de Bernoulli

42 42 8. A equação de Bernoulli

43 43 8. A equação de Bernoulli

44 44 A lista completa de hipóteses que conduz à obtenção da equação de Bernoulli a partir da equação da energia é: regime permanente; escoamento incompressível; escoamento sem atrito; escoamento ao longo de uma linha de corrente; ausência de trabalho de eixo entre 1 e 2; ausência de troca de calor entre 1 e 2. Esta é a lista completa de hipóteses a ser considerada na aplicação da equação de Bernoulli. Logo: cuidado com a aplicação da equação de Bernoulli !!! 8. A equação de Bernoulli

45 45 Exemplos de regiões de validade e não validade da equação de Bernoulli. 8. A equação de Bernoulli

46 46 Exemplos de regiões de validade e não validade da equação de Bernoulli. 8. A equação de Bernoulli

47 47 Carga piezométrica Carga total p = pressão estática 8. A equação de Bernoulli. Tubo de Pitot

48 48 Linhas piezométrica e de energia para o escoamento sem atrito em um duto 8. A equação de Bernoulli. Tubo de Pitot

49 49 p1p2 Exercício 8. Em uma tempestade a velocidade do vento atinge 65 mph. Calcular a forca do vento agindo sobre uma janela de 3ft x6ft de frente para a tormenta. A janela está localizada num a ponto em que a velocidade do vento não é afetada pelo solo, admitir = 0,0024 lug/ft3. 8. A equação de Bernoulli. Tubo de Pitot

50 50 Exercício 9. A carga de pressão estática em uma tubulação de ar é medida e indica 16 mm H2O. Um tubo de pitot indica na mesma posição 24 mm H2O. Calcular a velocidade ar a 20 0C.Hg. 8. A equação de Bernoulli. Tubo de Pitot

51 51 Perda de carga f M = fator de atrito de Moody (adimensinal) 4*f F = f M

52 52 Perda de cargaPerda de carga-fator de atrito (Diagrama de Moody)

53 53 Referências Bibliográficas: [01] WHITE, FRANK M.; Mecânica dos Fluidos - 4 a Edição; McGraw-Hill Interamericana do Brasil Ltda. [02] - POTTER, M.C. e WIGGERT, D. C. Mecânica dos fluidos. Thomson Pioneira


Carregar ppt "1 Fenômenos de Transporte INTRODUÇÃO AOS FLUIDOS EM MOVIMENTO."

Apresentações semelhantes


Anúncios Google