A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Mecânica dos Fluidos Equação de Bernoulli para fluidos reais.

Apresentações semelhantes


Apresentação em tema: "Mecânica dos Fluidos Equação de Bernoulli para fluidos reais."— Transcrição da apresentação:

1 Mecânica dos Fluidos Equação de Bernoulli para fluidos reais

2 Introdução Na engenharia trabalhamos com energia dos fluidos por unidade de peso, a qual denominamos carga; Na engenharia trabalhamos com energia dos fluidos por unidade de peso, a qual denominamos carga; Sabe-se que no escoamento de fluidos reais, parte de sua energia dissipa-se em forma de calor e nos turbilhões que se formam na corrente fluida; Sabe-se que no escoamento de fluidos reais, parte de sua energia dissipa-se em forma de calor e nos turbilhões que se formam na corrente fluida; Essa energia é dissipada para o fluido vencer a resistência causada pela sua viscosidade e a resistência provocada pelo contato do fluido com a parede interna do conduto, e também para vencer as resistências causadas por peças de adaptação ou conexões (curvas, válvulas,....). Essa energia é dissipada para o fluido vencer a resistência causada pela sua viscosidade e a resistência provocada pelo contato do fluido com a parede interna do conduto, e também para vencer as resistências causadas por peças de adaptação ou conexões (curvas, válvulas,....).

3 Perda de Carga Chama-se esta energia dissipada pelo fluido de PERDA DE CARGA (h p ), que tem dimensão linear, e representa a energia perdida pelo líquido por unidade de peso, entre dois pontos do escoamento. Chama-se esta energia dissipada pelo fluido de PERDA DE CARGA (h p ), que tem dimensão linear, e representa a energia perdida pelo líquido por unidade de peso, entre dois pontos do escoamento.

4 Perda de Carga A perda de carga é uma função complexa de diversos elementos tais como: Rugosidade do conduto; Viscosidade e densidade do líquido; Velocidade de escoamento; Grau de turbulência do movimento; Comprimento percorrido.

5 Perda de Carga Com o objetivo de possibilitar a obtenção de expressões matemáticas que permitam prever as perdas de carga nos condutos, elas são classificadas em: Contínuas ou distribuídas Localizadas

6 Perda de Carga Distribuída Ocorrem em trechos retilíneos dos condutos; A pressão total imposta pela parede dos dutos diminui gradativamente ao longo do comprimento; Permanece constante a geometria de suas áreas molhadas; Essa perda é considerável se tivermos trechos relativamente compridos dos dutos.

7 Perda de Carga Localizada Ocorrem em trechos singulares dos condutos tais como: junções, derivações, curvas, válvulas, entradas, saídas, etc; As diversas peças necessárias para a montagem da tubulação e para o controle do fluxo do escoamento, provocam uma variação brusca da velocidade (em módulo ou direção), intensificando a perda de energia;

8 Para fluidos reais tem-se : Quando a equação de Bernoulli é aplicada a dois pontos de um conduto com velocidade constante e mesma cota, tem-se a perda de carga dada por: Equação de Bernoulli para fluidos reais + h p p 1 – p 2

9 Fórmula universal da Perda de Carga distribuída A fórmula de Darcy-Weissbach, permite calcular a perda de carga ao longo de um determinado comprimento do condutor, quando é conhecido o parâmetro f, denominado coeficiente de atrito:

10 Fórmula universal da Perda de Carga distribuída Darcy-Weissbach: O coeficiente de atrito, pode ser determinado utilizando-se o diagrama de Moody, partindo-se da relação entre: Rugosidade e Diâmetro do tubo (ε/D) Número de Reynolds (R e ) O número de Reynolds é um parâmetro adimensional que relaciona forças viscosas com as forças de inércia, e é dado por: R e = ρvD ρ = massa específica; v = velocidade; D = diâmetro; μ = viscosidade dinâmica

11

12 Diagrama de Moody

13 Fórmula universal da Perda de Carga distribuída Para a região de números de Reynolds inferiores a 2000 (regime laminar) o comportamento do fator de atrito pode ser obtido analiticamente por intermédio da equação de Hagen-Poiseuille conduzindo à função: f = 64/R e

14 Cálculo das Perdas de Carga localizadas As perdas de carga localizadas podem ser expressas em termos de energia cinética ( v 2 /2g) do escoamento. Assim a expressão geral: h p = k v 2 /2g Onde: v=velocidade média do conduto em que se encontra inserida a singularidade em questão; k=coeficiente cujo valor pode ser determinado experimentalmente

15


Carregar ppt "Mecânica dos Fluidos Equação de Bernoulli para fluidos reais."

Apresentações semelhantes


Anúncios Google