A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Dialética Ferramenta Objeto DOUADY, R. Jeux des cadres et dialectique outil-objet. Recherches en Didactique des Mathématiques, vol. 7, n°2, pp. 5-31. La.

Apresentações semelhantes


Apresentação em tema: "Dialética Ferramenta Objeto DOUADY, R. Jeux des cadres et dialectique outil-objet. Recherches en Didactique des Mathématiques, vol. 7, n°2, pp. 5-31. La."— Transcrição da apresentação:

1 Dialética Ferramenta Objeto DOUADY, R. Jeux des cadres et dialectique outil-objet. Recherches en Didactique des Mathématiques, vol. 7, n°2, pp La Pensée Sauvage, 1986.

2 Marilena Bittar2 Introdução Interesse da didática está no processo pelo qual os alunos podem adquirir um saber matemático em situação didática A classe é uma micro-sociedade compreendendo um professor e os alunos entre os quais se produzem trocas sobre um certo saber De que saber se trata? Científico? Cultural? Prático? Escolar? Que relações há entre esses saberes? Como trabalhar com eles em classe visando a aprendizagem dos alunos? A escolha da DFO é de fazer esse estudo pelos conteúdos.

3 Marilena Bittar3 Quadro teórico Referências didáticas Piaget e Escola de Psicologia social – importância da ação, o papel dos desequilíbrios-reequilíbrios, o papel dos conflitos cognitivos. Vergnaud (ponto de vista do saber) evidenciou a importância de um recorte por campos conceituais. Retomada dessa idéia, distinguindo os quadros de que dependem os conceitos presentes em um problema, e as relações entre esses quadros. Brousseau – a escolha de um problema (condições que preenche) atende à TSD.

4 Marilena Bittar4 Quadro teórico Aspecto ferramenta, aspecto objeto de um conceito matemático Matemáticos são confrontados a problemas que ninguém sabe resolver. Para resolver esses problemas, são levados a criar ferramentas conceituais (que se unem às ferramentas técnicas). Para transmitir à comunidade científica, os conceitos são descontextualizados e formulados de uma forma mais geral possível. Eles adquirem assim, o estatuto de objeto. Um conceito é ferramenta quando focamos o interesse sobre o uso que é feito para resolver um problema. Uma mesma ferramenta pode ser adaptada a vários problemas, várias ferramentas podem ser adaptadas a um mesmo problema. Por objeto entendemos o objeto cultural tendo seu lugar em um edifício mais amplo que é o saber científico em um dado momento, reconhecido socialmente. (O que está em foco é o conceito matemático)

5 Marilena Bittar5 Quadro teórico Aspecto ferramenta, aspecto objeto de um conceito matemático Durante um atividade matemática, um aluno pode recorrer a uma ferramenta de maneira implícita ou explícita. Exemplo: Existe um quadrado de área igual a 12cm²? Resposta: Para um quadrado de lado 3 cm, a área é 9cm², para um quadrado de lado 4cm, a área é 16cm², quando o lado passa de 3cm para 4cm, existirá certamente um momento em que a área será 12cm². É possível reconhecer a relação entre dimensão e área de um quadrado como ferramenta explícita. Entretanto, a função f(x)=x², sua continuidade, o teorema do valor intermediário são necessários para justificar a afirmação do aluno. Essas são ferramentas implícitas.

6 Marilena Bittar6 Quadro teórico Mudanças de quadros Uma parte importante do trabalho dos matemáticos é consagrada à interpretar os problemas que eles se propõem a resolver, a mudar de pontos de vista, a formulá-los de outro modo, a passá-los de um quadro a outro, a confrontar problemas enunciados em quadros diferentes mas que a tradução em um mesmo quadro conduz a colocar novas questões e sugere o uso de outras ferramentas que não foram inicialmente solicitadas. Quadro – sentido usual (aritmético, algébrico,...) A mudança de quadros é um meio de obter formulações diferentes de um problema que sem ser necessariamente totalmente equivalentes, permitem novo acesso às dificuldades encontradas e o uso de ferramentas e técnicas que não se impunham na primeira formulação.

7 Marilena Bittar7 Propósitos da dialética ferramenta/objeto Dizemos que um aluno tem conhecimentos em matemática se ele é capaz de fazer uso desse conhecimento como ferramenta explícita em problemas que ele deve resolver, tendo ou não indicações para tal, se ele é capaz de fazer adaptações quando as condições habituais de uso não estão exatamente satisfeitas, para interpretar os problemas. O ensino deve integrar momentos em que a classe simule uma sociedade de pesquisadores em atividade. Porém, vários elementos da classe agem como obstáculos a uma tal simulação. Metodologia: eu aprendo, eu aplico. Pouca responsabilidade dada aos alunos. Problemas raramente discutem o caráter essencial dos conceitos Pratica-se a separação de quadros.

8 Marilena Bittar8 Propósitos da dialética ferramenta/objeto Para construir um ensino diferente, restituindo sentido às ferramentas que os alunos utilizam, sempre assegurando uma apresentação institucional aos objetos correspondentes, temos necessidade de caracterizar uma outra organização do ensino, baseada em 3 pontos: Dialética ferramenta-objeto Dialética antigo-novo Jogo de quadros (mudança de quadros)

9 Marilena Bittar9 Propósitos da dialética ferramenta/objeto Problemas: condições e exemplos. Enunciado (contexto e questões) tem sentido para os alunos. Considerando os conhecimentos dos alunos, eles podem começar uma estratégia de resolução, mas não podem resolver completamente o problema. Os conhecimentos visados pela aprendizagem são ferramentas adaptadas ao problema. O problema pode ser formulado em, pelo menos, dois quadros diferentes.

10 Marilena Bittar10 Propósitos da dialética ferramenta/objeto Exemplo: Considere retângulos de perímetro P fixo (34 ou 36, por exemplo). Calcular a área de vários dentre deles. Ordenar os retângulos, da menor área à maior área. A área pode assumir valores tão grandes quanto queiramos ou existe um maior valor possível? Para P=34, há um retângulo de área 70cm², um de área 72cm², e um de área entre 70cm² e 72cm²? P é uma variável didática. Esse problema é interessante para os alunos que têm conhecimento dos inteiros e de algumas frações mas não conhecem decimais nem multiplicação de frações, sabem calcular área de retângulos de dimensões inteiras, que têm uma concepção geométrica de área quando as dimensões não são inteiras. Objetivo de aprendizagem: extensão da multiplicação aos números fracionários.

11 Marilena Bittar11 Dialética ferramenta/objeto Fases da dialética ferramenta-objeto A) Antigo B) Pesquisa do novo implícito C) Explicitação e institucionalização local D) Institucionalização – estatuto de objeto E) Familiarização – reinvestimento F) Complexificação da tarefa ou novo problema

12 Marilena Bittar12 Fases da dialética ferramenta/objeto A) Antigo Conceitos matemáticos são usados com ferramentas explícitas para resolver ao menos parcialmente o problema. Os alunos podem exibir retângulos aceitáveis cujas dimensões são inteiras, quer dizer, designando por a e b suas medidas, 2a+2b=34 ou ainda a+b=17, e para cada um deles calcular a área e depois ordenar os resultados.

13 Marilena Bittar13 B) Pesquisa do novo implícito Os alunos têm dificuldade para resolver completamente o problema. Isso acontece se a estratégia de base é muito pesada, se ela não funciona mais ou se novas questões são postas. É o caso da pesquisa de retângulos com área em um intervalo fixo ou com um valor fixo ou assumindo um valor máximo. O quadrado de lado (8+1/2)cm teria área maior que o retângulo de lados 8cm e 9cm? Como comparar essas duas áreas: geometricamente? Com cálculos? Seria preciso calcular a área do quadrado, como fazer? Essas questões levam o aluno a buscar novos meios adaptados. Frequentemente, progressos eficazes surgem de mudanças de quadros. 8<8+1/2<9 Quadro geométrico Fases da dialética ferramenta/objeto

14 Marilena Bittar14 C) Explicitação e institucionalização local Alguns elementos podem ser agora apropriados pelos alunos. Eles podem ser formulados em termos de objeto ou em termos de práticas com suas condições de uso do momento. No exemplo: entre os retângulos de perímetro fixo, o que tem maior área é o quadrado. Trata-se do novo explícito suscetível de ser reutilizado. Momento de discussão coletiva mas com reações individuais. Fases da dialética ferramenta/objeto

15 Marilena Bittar15 D) Institucionalização – estatuto de objeto O professor expõe o novo e o que deve ser retido com as condições de uso. Apresenta o curso de forma organizada, estruturada com definições, teoremas, demonstrações, mostrando o que é essencial. É o caso da escrita decimal, das regras de cálculo e da comparação desses números. O professor tem a responsabilidade de dar um estatuto de objeto aos conceitos estudados. Esse novo será, futuramente, usado como antigo. Fases da dialética ferramenta/objeto

16 Marilena Bittar16 E) Familiarização – reinvestimento O professor propõe exercícios variados que necessitam das noções recentemente institucionalizadas. Os alunos desenvolvem hábitos e saber-fazer; integram o saber social à seu saber particular. Esses exercícios exigem somente saberes conhecidos, mas os alunos os abordam com concepções que evoluíram e lhes permitem visualizar um campo mais amplo de problemas. Fases da dialética ferramenta/objeto

17 Marilena Bittar17 F) Complexificação da tarefa ou novo problema O professor propõe ao aluno um problema mais complexo (encontrar um retângulo tal que o semi-perímetro é igual à 41cm e a área é igual à 402cm²). Trata-se de colocar os alunos à prova em situações mais complexas em que eles deverão testar ou desenvolver seus domínios das novas aquisições. Fases da dialética ferramenta/objeto Muitas vezes o ciclo (A, B, C, D, E=A) é necessário antes de desenvolver um ciclo da dialética.

18 Marilena Bittar18 Jogos de Quadros São mudanças de quadros provocadas pelo professor, com problemas respondendo às condições enunciadas anteriormente, para permitir que os alunos evoluam nas fases de pesquisa, notadamente para elaborar filiação de questões pertinentes com relação ao problema proposto. Se trata do desenvolvimento de um procedimento em que se distingue 3 fases: Transferência e interpretação Correspondências imperfeitas Melhora das correspondências e progresso do conhecimento

19 Marilena Bittar19 Jogos de Quadros Transferência e interpretação Os alunos são confrontados a um problema formulado em um certo quadro. Considerando seus conhecimentos, a análise que fazem do problema os conduz a traduzir tudo ou parte do problema para um outro quadro. Assim, eles estabelecem correspondências entre quadros diferentes. O problema encontrar um retângulo de semi-perímetro 41cm e área 402cm 2 é enunciado no quadro geométrico. Os alunos passam ao quadro numérico|algébrico buscando dois números cuja soma seja 41 e o produto 402.

20 Marilena Bittar20 Jogos de Quadros Correspondências imperfeitas As correspondências são imperfeitas seja por razões matemáticas ou por insuficiência de conhecimentos dos alunos. A situação é fonte de desequilíbrio No exemplo anterior, quando o aluno encontra dois números cujo produto é igual à 402, ele fica convencido de que poderá escolher bem os números para melhorar o intervalo. As tentativas (frustradas ou não) criam desequilíbrios nas convicções e no que os alunos sabem. Eles estão manipulando implicitamente funções que seus conhecimentos matemáticos não permitem controlar.

21 Marilena Bittar21 Jogos de Quadros Melhora das correspondências e progresso do conhecimento A comunicação entre quadros e, em particular, a comunicação com um quadro auxiliar de representação é um fator de re-equilíbrio. Nesse momento os alunos podem elaborar conjecturas como: quando reduzimos a diferença entre a e b, o produto aumenta, quando aumentamos a diferença, o produto diminui. Daqui sai um método para encontrar pares de números, cada vez mais próximos do desejado. Uma interpretação geométrica deste enunciado permitiu a alguns alunos a elaboração de uma prova dele. As interações entre quadros permitiram o progresso dos conhecimentos dos alunos.

22 Marilena Bittar22 Jogos de Quadros Quanto mais os alunos conseguirem realizar passagens entre quadros, mais garantias de êxito ele terá. É importante que o ensino proponha situações que favoreçam (peçam) mudanças de quadros; o aluno deve conseguir ler um problema em um determinado quadro e resolvê-lo ou interpretá-lo, pensar, resolver, em um outro quadro.


Carregar ppt "Dialética Ferramenta Objeto DOUADY, R. Jeux des cadres et dialectique outil-objet. Recherches en Didactique des Mathématiques, vol. 7, n°2, pp. 5-31. La."

Apresentações semelhantes


Anúncios Google