A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Simetrias do Plano e Grupos de Friso. 1. Isometrias no Plano.

Apresentações semelhantes


Apresentação em tema: "Simetrias do Plano e Grupos de Friso. 1. Isometrias no Plano."— Transcrição da apresentação:

1 Simetrias do Plano e Grupos de Friso

2 1. Isometrias no Plano

3

4

5

6

7

8 A rotação inversa T 1 é a rotação de centroO e amplitude. A transformação identidade é a rotação(de centroO) em que =0º (ou um múltiplo de 360º).

9

10

11

12

13

14

15

16

17

18

19

20

21

22 2. Simetrias do Plano

23

24 e Figura 1 Exemplos de figuras simétricas A reflexãode eixoe deixaafigura 1 invariante. A figura tem uma simetria de reflexão.

25

26

27

28

29

30

31 3. Frisos e grupos de friso

32

33 Figura 3b. Motivo do padrão da figura 2. Figura 2 v Figura 1 Figura 3a. Motivo do padrão da figura 1.

34

35

36

37

38

39

40

41

42

43 FIM (da 1ª parte)

44 4. Padrões Periódicos ou Papeis de Parede

45 Padrões periódicos ou papeis de parede são figuras planas caracterizadas por terem uma região fundamental (motivo) e duas translações linearmente independentes Padrões periódicos ou papeis de parede são figuras planas caracterizadas por terem uma região fundamental (motivo) e duas translações linearmente independentes Definição

46 17 Grupos de Simetria dos Padrões Periódicos

47 Grupos Sem Rotações

48 Grupo p1 Apenas estão presentes translações; Apenas estão presentes translações; É um grupo de translações. É um grupo de translações.

49 Grupo pm Além das duas translações presentes que formam um subgrupo de qualquer papel de parede, estão presentes reflexões. Além das duas translações presentes que formam um subgrupo de qualquer papel de parede, estão presentes reflexões.

50 Grupo pg Além do subgrupo das translações estão presentes também as reflexões deslizantes. Além do subgrupo das translações estão presentes também as reflexões deslizantes.

51 Grupo cm Grupo onde estão presentes as reflexões. Grupo onde estão presentes as reflexões. Reflexões deslizantes onde o eixo não é das reflexões. Reflexões deslizantes onde o eixo não é das reflexões.

52 Grupos Com Rotações de Grau Graus

53 Grupo p2 Rotações de 180 graus e translações. Rotações de 180 graus e translações.

54 Grupo pgg Rotações de 180 graus; Rotações de 180 graus; Não há reflexões; Não há reflexões; Há reflexões deslizantes. Há reflexões deslizantes.

55 Grupo pmg Para além das translações e rotações de 180 graus, estão presente reflexões em uma só direcção. Para além das translações e rotações de 180 graus, estão presente reflexões em uma só direcção.

56 Grupo pmm Rotações de 180 graus Rotações de 180 graus Reflexões em duas direcções. Reflexões em duas direcções. Os centros de rotação estão sobre os eixos de reflexão. Os centros de rotação estão sobre os eixos de reflexão.

57 Grupo cmm Rotações de 180 graus onde os centros de rotação não estão sobre os eixos de reflexão. Rotações de 180 graus onde os centros de rotação não estão sobre os eixos de reflexão. Reflexões em duas direcções. Reflexões em duas direcções.

58 Grupos Com Rotações de Grau Graus

59 Grupo p4 Não tem reflexões nem reflexões deslizantes, apenas rotações de 90 e 180 graus. Não tem reflexões nem reflexões deslizantes, apenas rotações de 90 e 180 graus.

60 Grupo p4m Rotações de 90 e 180 graus. Rotações de 90 e 180 graus. Reflexões onde os eixos fazem um ângulo de 45 graus. Reflexões onde os eixos fazem um ângulo de 45 graus.

61 Grupo p4g Rotações de 90 e 180. Rotações de 90 e 180. Reflexões onde os eixos não fazem ângulo de 45 graus. Reflexões onde os eixos não fazem ângulo de 45 graus.

62 Grupos Com Rotações de Grau Graus

63 Grupo p3 Apenas rotações de 120 graus. Apenas rotações de 120 graus.

64 Grupo p31m Rotações de 120 graus. Rotações de 120 graus. Reflexões. Reflexões. Os centros de rotação não estão todos sobre os eixos de reflexão. Os centros de rotação não estão todos sobre os eixos de reflexão.

65 Grupo p3m1 Rotações de 120 graus. Rotações de 120 graus. Reflexões. Reflexões. Os centros de rotação estão todos sobre os eixos de reflexão. Os centros de rotação estão todos sobre os eixos de reflexão.

66 Grupos Com Rotações de Grau Graus

67 Grupo p6 Rotações de 60, 120 e 180 graus. Rotações de 60, 120 e 180 graus.

68 Grupo p6m Acrescenta reflexões às simetrias do grupo anterior Acrescenta reflexões às simetrias do grupo anterior

69

70 Pavimentações Cada um dos motivos é isolado por uma figura geométrica. Cada um dos motivos é isolado por uma figura geométrica. A reunião destas figuras geométricas gera uma rede, que cobre todo o plano. A reunião destas figuras geométricas gera uma rede, que cobre todo o plano.

71 Pavimentações Com as pavimentações pretende-se cobrir completamente o plano, através de um conjunto numerável de ladrilhos que não se sobrepõem e não deixam espaços em branco. Com as pavimentações pretende-se cobrir completamente o plano, através de um conjunto numerável de ladrilhos que não se sobrepõem e não deixam espaços em branco.

72 Conjuntos aceitáveis para ladrilhos de uma pavimentação Conjuntos não aceitáveis para ladrilhos de uma pavimentação Conjuntos não conexos e cuja fronteira não é uma curva fechada ou que se cruza não são aceitáveis para construir uma pavimentação.

73 Pavimentações Regulares São constituídas apenas por polígonos regulares do mesmo tipo São constituídas apenas por polígonos regulares do mesmo tipo Só é possível construir 3. Só é possível construir 3.

74 Lados Ângulo Interno Nº de Polígonos , , , , , , , , , , , , , , ,52, , , , , , ,

75 Pavimentações Semi-Regulares ou Arquimedianas São as que não são formadas apenas por um polígono regular. São as que não são formadas apenas por um polígono regular. Em torno de cada vértice pode encontrar-se triângulos equiláteros, hexágonos, quadrados e pentágonos regulares. Em torno de cada vértice pode encontrar-se triângulos equiláteros, hexágonos, quadrados e pentágonos regulares. Chama-se espécie de um vértice aos polígonos regulares que se intersectam nesse vértice. Chama-se espécie de um vértice aos polígonos regulares que se intersectam nesse vértice. Chama-se tipo de vértice à ordem pela qual estão colocados os polígonos em torno do vértice. Chama-se tipo de vértice à ordem pela qual estão colocados os polígonos em torno do vértice.

76 17 espécies de vértices e 21 tipos É condição necessária para que uma pavimentação formada por polígonos regulares seja de um dos seguintes dos 21 tipos É condição necessária para que uma pavimentação formada por polígonos regulares seja de um dos seguintes dos 21 tipos

77 17 espécies de vértices e 21 tipos

78

79 Exemplos

80 FIM


Carregar ppt "Simetrias do Plano e Grupos de Friso. 1. Isometrias no Plano."

Apresentações semelhantes


Anúncios Google