Ondaletas: Uma Necessidade?!

Slides:



Advertisements
Apresentações semelhantes
Correlação e Regressão
Advertisements

AJUSTE DE CURVAS 6.1 Introdução 6.2 Método dos quadrados mínimos
COMUNICAÇÃO DE INFORMAÇÃO A CURTAS DISTÂNCIAS
Aula 1 – Sinais Analógicos e Digitais
Controle de Processos por Computador
Funções Próprias e Resposta em Frequência dos SLITs
Capítulo 2 - Derivadas No final do capítulo 1, já definimos o coeficiente angular de uma curva y = f(x) no ponto onde x = x0. Chamamos esse limite, quando.
Derivadas Já definimos o coeficiente angular de uma curva y = f(x) no ponto onde x = x0. Chamamos esse limite, quando ele existia, de derivada de f em.
Nice Maria Americano da Costa
Sinais e Sistemas – Capítulo 2
Sinais e Sistemas – Capítulo 4
Sinais e Sistemas – Capítulo 3
Sinais e Sistemas – Capítulo 4
Sinais e Sistemas – Capítulo 3
Temas de DSP Conceitos básicos de Sinais.
Resolução Numérica de Equações – Parte I
1. RESPOSTA EM FREQÜÊNCIA
10. Análise de Fourier usando DFT
Imagem Digital Conceitos, Processamento e Análise
Imagem Digital Conceitos, Processamento e Análise 1.Imagem e funções 2.Imagem digital: amostragem, quantização e codificação 3.Re-amostragem de funções.
Cinemática da Turbulência Homogênea e Isotrópica
QUESTÕES de 01 a 03 INSTRUÇÃO: Para responder a essas questões, identifique as afirmativas verdadeiras e, em seguida, marque na Folha de Respostas a alternativa.
AMBIENTE MULTIMÍDIA DE SUPORTE À DISCIPLINA DE PÓS-GRADUAÇÃO FERRAMENTAS DE DIAGNÓSTICO DE MÁQUINAS Capítulo 3.3 – Avaliação de falhas com o uso de técnicas.
AMBIENTE MULTIMÍDIA DE SUPORTE À DISCIPLINA DE PÓS-GRADUAÇÃO
Ondulatória.
Introdução aos Sistemas de Controle
3 - Equações Lineares de Segunda Ordem
TENSÕES E CORRENTES EM CIRCUITOS TRIFÁSICOS BALANCEADOS Sistemas de potência são alimentados por geradores trifásicos. De maneira ideal, os geradores suprem.
Processamento Tempo-Freqüência de Sinais Auditivos
Fundamentos de Análise de Sinais
Sinais e Sistemas Introdução 1. Definição 2. Classificação de Sinais
Números Complexos Definição: Um número complexo z pode ser definido como um par ordenado (x, y) de números reais x e y, z = (x, y) (1) sujeito.
Prof. Marcelo de Oliveira Rosa
Grandezas Físicas Prof. Climério Soares.
Frentes e Frontogênese
Sistemas de Aquisição e Processamento de Dados
Fundamentos de Análise de Sinais
ESTATÍSTICA.
Fundamentos de Telecomunicações
Teorema de Rolle e Teorema do Valor Médio
TRANSFORMADA DE FOURIER
TRANSFORMADA DE FOURIER DISCRETA
Prof. Marcelo de Oliveira Rosa
Introdução teórica A modulação em freqüência consiste na variação da freqüência da portadora proporcionalmente ao sinal de informação. Dado o sinal modulador.
Autor: José António Fernandes de Freitas
Transformada de fourier (ft)
Prof. Marcelo de Oliveira Rosa
Cap. 5 – Introdução à análise diferencial de escoamentos
Grandezas Escalares e Vetoriais
exemplos e aplicaçãoes da TRANSFORMADA EM ONDELETAS
Resposta no Tempo de SLITs Causais
Matemática e suas Tecnologias – Matemática
Aula 6 Disciplina: Sistemas de Controle 1 - ET76H
Física QUESTÃO 01 No SI (Sistema Internacional de Unidades), a medida da grandeza física trabalho pode ser expressa em joules ou pelo produto: a) kg.m.s-1.
Equações algébricas e transcendentais
Tecnologias - Matemática Representação geométrica
Transformada de Fourier
Para um sinal determinístico x(t), o espectro é bem definido: Se
A Série e a Transformada de
Sistemas e Sinais (LEIC) – Resposta em Frequência Carlos Cardeira Diapositivos para acompanhamento da bibliografia de base (Structure and Interpretation.
Funções Próprias e Resposta em Frequência dos SLITs
Sistemas Lineares e Invariantes: Tempo Contínuo e Tempo Discreto
Processamento de Sinais
TRANSFORMADA DE FOURIER
Análise Espectral Jean Baptiste J. Fourier ( )
Sistemas e Sinais Transformada de Fourier Discreta DEEC/ ISTIsabel Lourtie TRANSFORMADA DE FOURIER DISCRETA Transformada de Fourier de sinais discretos.
Professor: Gerson Leiria Nunes.  Correlação de sinais  Correlação cruzada  Exemplo correlação  Autocorrelação  Propriedades da correlação  Exemplo.
1 Processamento de Sinais CDESC Rodolfo Araujo Victor RH/UP/ECTEP Aula 1 03/11/2010.
Professor: Gerson Leiria Nunes.  Introdução  Séries de Fourier  Potência de sinais periódicos  Espectro de sinais periódicos.
PC - Semana61 MODELANDO SISTEMAS LTI NO DOMÍNIO DA FREQUÊNCIA.
Transcrição da apresentação:

Ondaletas: Uma Necessidade?! Por MSc. Augusto César Barros Barbosa - 5333348 Métodos Observacionais em Climatologia e Meteorologia de Mesoescala Professora: Dra. Leila Maria Vespoli de Carvalho São Paulo 16 outubro 2008

Objetivo Mostrar dentro de um contexto histórico, à necessidade de se utilizar a transformada em ondaletas como uma ferramenta (técnica) importante na investigação de fenômenos não-estacionários, onde a análise de Fourier tradicional não é recomendável (Farge, 1992).

Uma Breve História: Fourier, Joseph Físico e Matemático Francês. Nasceu em 21 de Março de1768 em Auxerre (França). Faleceu em 16 de Maio de 1830 em Paris aos 62 anos.

Joseph Fourier afirmou que qualquer função periódica f(x) poderia ser expressa por uma somatória de senos e cossenos da seguinte forma: onde a0, ak e bk são os coeficientes de Fourier da série.

A Transformada de Fourier (TF) é uma ferramenta útil para saber a contribuição para a energia total da série temporal (estacionária), de cada função seno e cosseno que estão presentes nesta série. A TF é definida da seguinte forma: onde ω é a freqüência e f(x) é a série temporal. Note que ocorre o que se chama de “Convolução”. Princípio importante para o entendimento da teoria das ondaletas.

A Convolução Onde: 1. f(x) representa uma série temporal qualquer. “Toda transformação linear que seja invariante por translação, pode ser escrita sob a forma de uma convolução.” Define-se a convolução contínua unidimensional entre duas funções f(x) e g(x), no ponto t como: Onde: 1. f(x) representa uma série temporal qualquer. 2. g(x) representa um filtro que tem o papel de identificar e selecionar o período de cada componente oscilatória presente em f(x).

A Linearidade da TF Demonstração da linearidade da transformada de Fourier em funções unidimensionais f(x) e g(x), onde c é uma constante qualquer.

A Linearidade da Convolução Demonstração da linearidade da convolução para as funções unidimensionais f(x), g(x) e uma função fixa h(x), onde c é uma constante pertencente aos reais.

Relação entre a TF e a Convolução A seguinte propriedade básica relaciona a operação de convolução com a transformada de Fourier. Onde f(x) e g(x) são funções quaisquer.

Aplicação da TF Como exemplo ilustrativo será mostrado três séries temporais de funções senos com 16s de duração e de amplitudes e freqüências diferentes (1, 5 e 10Hz).

O Espectro de Energia A figura mostra a presença das três freqüências promovidas pelas funções senos presentes na série temporal.

A Transformada de Fourier Janelada Gabor em 1946, percebeu a deficiente aplicabilidade da TF em séries temporais não-estacionárias. Problemáticas: 1. Janela Fixa. 2. Energia Infinita (-∞ & +∞).

A Transformada em Ondaleta Contínua A transformada em ondaletas contínua é uma transformada linear que pode ser utilizada na análise de sinais não-estacionários para extrair informações das variações em freqüência desses sinais. Para que uma função seja denominada de Função Ondaleta (FO), representada pela letra psi, deve satisfazer a duas propriedades distintas, descritas abaixo: 1ª) A integral dessa função deve ser zero, ou seja:

Continua... 2ª) A FO deve possuir energia unitária, isto é: De um modo geral as funções denominadas de ondaletas, possuem a propriedade básica de dupla localização em tempo e em freqüência, onde: Tempo: Ocorre por ser localizada em um intervalo finito. Freqüência: Se dá ao fato da TF da FO poder ser interpretada como um filtro passa-banda.

Localização Tempo - Freqüência Arbitrado pelo Princípio da Incerteza de Heisenberg

A Função Ondaleta A análise por ondaletas baseia-se na CONVOLUÇÃO do sinal em estudo f(t) com sucessivas funções representativas de escalas diferentes, as funções ondaletas ψj,k(t). A função ondaleta pode ser definida da seguinte forma: A Transformada em ondaleta de uma função f(t) é definida como se segue:

Continua... As funções são funções ondaletas derivadas da ondaleta base por translações e por mudanças de escala. Assim a transformada em ondaletas contínua de uma série temporal f(t) é definida como a convolução da função (série) com o complexo conjugado da ondaleta mãe escalonada e normalizada.

A Função Ondaleta Base de Morlet A função ondaleta base de Morlet é definida da seguinte forma: Logo a transformada em ondaletas utilizando a FO de Morlet será: Como em geral a operação de convolução é mais complexa de calcular do que a TF, usa-se o teorema da convolução para determinar as integrais das funções convoluídas, calculando-se o produto das TF das funções envolvidas.

Sinal da Função Ondaleta de Morlet Parte Real (Linha Sólida) e Parte Imaginária (Linha Pontilhada), parte da Ondeleta de Morlet com ω0=6. Figura tirada de D. Maraun & J. Kurts (2004). (a) Sinal da ondeleta de Morlet com largura e amplitude arbitrária, (b) Construção da ondeleta de Morlet (azul tracejado) a partir de uma onda seno (verde), modulada por um pacote gaussiano (vermelho), Torrence & Compo (1998).

Significância Estatística Pk Para a significância estatística da ondeleta, pode-se utilizar a ‘hipótese nula’ em que o sinal é ruído vermelho com dado ‘Background Power Spectrum (Pk)’ Allen & Smith (1996), em que se encontra: Onde: α é a autocorrelação da série com o ruído vermelho. k são os índices da freqüência de Fourier.

Sinal Escalonado e Deslocado Exemplo de uma Função Ondaleta escalada e transladada, utilizando-se a ondaleta-base de Morlet (Parte superior). Sinal não normalizado. Figuras tiradas da dissertação de Regis Rossi Alves Faria, EPUSP - 1997.

Janelas de Análise no Plano Tempo – Freqüência para TEF e Ondaletas Figuras tiradas da dissertação de Regis Rossi Alves Faria, EPUSP - 1997.

A Translação e a Dilatação no Espaço O termo ondaletas refere-se a um conjunto de funções com forma de pequenas ondas geradas por dilatações Ψ(t)→Ψ(2t) e, translações, Ψ(t)→Ψ(t+1),de uma função geradora base. Suponhamos uma série temporal com comprimento s de 1024 pontos de tal forma que tenhamos: Logo a 1ª escala será: 2n-1 2n-1 2n

Continua... Em seguida teremos: 2n-2 2n-2 2n-2 2n-2 A representação de “Multiresolução” fornece uma moldura hierárquica simples para interpretação de informação da série temporal. A diferentes resoluções, os detalhes de um sinal geralmente caracterizam diferentes estruturas do mesmo.

Continua... O processo mostrado anteriormente proporcionará um diagrama conhecido como “Periodograma de Ondaletas”, como mostrado logo abaixo:

Resultados... Note que, através do periodograma, podemos identificar exatamente quais as freqüências predominantes em uma série temporal qualquer. Tal fato, é extremamente importante na análise de séries temporais não-estacionárias.

A Transformada em Ondaletas Cruzada Assim como na TF é possível definir a ondaleta cruzada de duas séries temporais, como WnXY=WXWY*, onde (*) denota o complexo conjugado e (n=1,...N); além disso, define-se o espectro de energia da ondaleta cruzada como sendo: onde Zν(p) é o nível de confiança associado com a probabilidade p para o Probability Density Function (PDF) definido pela raiz quadrada do produto de duas distribuições Q2. Por exemplo, os 5% do nível de significância nos gráficos das OC deve ser utilizado Z2(95%).

O Ângulo de Fase da Ondaleta Cruzada A média circular de um conjunto de ângulos (ai, i =1...n) é definido de acordo com (Zar et al., 1999). O Transforma em Ondaletas Coerência De acordo com Torrence & Webster (1999), pode-se definir a Ondaleta Coerência entre duas séries temporais como:

Continua... É útil pensar em ondaletas coerência como um coeficiente de correlação localizado em tempo-freqüência-espaço. A definição de S se dá da seguinte forma: onde Sescala denota a suavização ao longo da escala dos eixos das ondaletas e Stempo no tempo. Para a ondaleta base de Morlet, um operador de suavização é dado de acordo com Torrence & Webster (1999).

Áreas de Aplicação Turbulência Atmosférica (C. Rodrigues Neto et al.,2001)Processamento de Sinais (M. Vertteli & C. Herley, 1992) Sistemas Hidrológicos (D. J. R. Nordemann, 1998) Geofísica Espacial (M. J. A. Bolzan, 2005 ) 4. Interação Oceano-Atmosfera (Barbosa & Camargo, 2006) 5. Convecção Tropical (Weng & Lau, 1994) 6. O ENSO (Gu & Philander, 1995) 7. Frentes Frias Atmosféricas (Gamage & Blumen, 1993) 8. Estruturas coerentes em fluxos turbulentos (Farge, 1992)

Aplicação A figura mostra uma língua fria (Ondas de Instabilidade Tropical - OIT)

Diagrama de Hovmöller da TSM no Equador, 1ºN, 2ºN, 3ºN e 4ºN; para o ano de 2001. Temperatura em ºC. TSM filtrada em 20-60 dias. Anomalias em ºC.

A Interpretação Física TSM e o vento completamente em fase. Vento avançado 45º da TSM. A TSM responde em 1/8 do período. Vento avançado 90º da TSM. A TSM responde em 1/4 do período. Vento avançado 135º da TSM. A TSM responde em 3/8 do período. Vento e TSM em fase completamente opostas. Vento defasado 225º da TSM, ou a TSM avançada 135º do vento. O vento responde com 3/8 do período. Vento defasado 90º da TSM. O vento responde em 1/4 do período. Vento defasado 45º da TSM. O vento responde em 1/8 do período.

Dias Juliano: 50: 19/02 100:10/04 150:30/05 200:19/07 250:07/09 300:27/10 350:16/12

Dias Juliano: 50: 19/02 100:10/04 150:30/05 200:19/07 250:07/09 300:27/10 350:16/12

Dias Juliano: 50: 19/02 100:10/04 150:30/05 200:19/07 250:07/09 300:27/10 350:16/12 XWT TSMxUU 1ºN19ºW 2001. WTC TSMxUU 1ºN19ºW 2001.

Dias Juliano: 50: 19/02 100:10/04 150:30/05 200:19/07 250:07/09 300:27/10 350:16/12 XWT TSMxVV 1ºN19ºW 2001. WTC TSMxVV 1ºN19ºW 2001.

Continua...

Existe a Necessidade de um Filtro? É útil pensar em ondaletas como consecutivos filtros passa-banda, mas até quando isso é viável?

Continua...

Considerações Finais... A TRANSFORMADA WAVELETS (ONDALETAS), REVELA NO TEMPO QUAL PARTE DO SINAL ANALISADO TRANSPORTA ENERGIA SIGNIFICATIVA E, EM QUAIS FREQÜÊNCIAS (ESCALAS). TODAVIA, A UTILIZAÇÃO DE UM FILTRO EM ALGUNS CASOS TORNA-SE BASTANTE VIÁVEL. Augusto Barbosa.

Obrigado!!!