A apresentação está carregando. Por favor, espere

A apresentação está carregando. Por favor, espere

Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 1 Prof. Afonso C. Medina Prof. Leonardo Chwif Coleta e Modelagem dos Dados de Entrada.

Apresentações semelhantes


Apresentação em tema: "Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 1 Prof. Afonso C. Medina Prof. Leonardo Chwif Coleta e Modelagem dos Dados de Entrada."— Transcrição da apresentação:

1 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 1 Prof. Afonso C. Medina Prof. Leonardo Chwif Coleta e Modelagem dos Dados de Entrada Capítulo 2 Páginas Este material é disponibilizado para uso exclusivo de docentes que adotam o livro Modelagem e Simulação de Eventos Discretos em suas disciplinas. O material pode (e deve) ser editado pelo professor. Pedimos apenas que seja sempre citada a fonte original de consulta. Versão /09/06

2 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 2 Coleta Tratamento Inferência Três Etapas

3 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 3 1. Escolha adequada da variável de estudo 2. O tamanho da amostra deve estar entre 100 e 200 observações. Amostras com menos de 100 observações podem comprometer a identificação do melhor modelo probabilístico, e amostras com mais de 200 observações não trazem ganhos significativos ao estudo; Coleta dos Dados

4 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 4 3. Coletar e anotar as observações na mesma ordem em que o fenômeno está ocorrendo, para permitir a análise de correlação ; 4. Se existe alguma suspeita de que os dados mudam em função do horário ou do dia da coleta, a coleta deve ser refeita para outros horários e dias. Na modelagem de dados, vale a regra: toda suspeita deve ser comprovada ou descartada estatisticamente. Coleta dos Dados

5 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 5 Exemplo 2.1: Filas nos Caixas do Supermercado Um gerente de supermercado está preocupado com as filas formadas nos caixas de pagamento durante um dos turnos de operação. Quais seriam as variáveis de estudo para coleta de dados? (S) ou (N). ( ) O número de prateleiras no supermercado ( ) Os tempos de atendimento nos caixas ( ) O número de clientes em fila ( ) O tempo de permanência dos clientes no supermercado ( ) Os tempos entre chegadas sucessivas de clientes nos caixas de pagamento N S N N S É resultado!!

6 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 6 Exemplo 2.1: Coleta de Dados Intervalo entre chegadas de pessoas nos caixas do supermercado (100 medidas). Tempos em minutos:

7 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 7 Exemplo 2.1: Medidas de Posição e Dispersão Medidas de posição Média10,44 Mediana5 Moda3 Mínimo0 Máximo728 Medidas de dispersão Amplitude728 Desvio padrão51,42 Variância da amostra2.643,81 Coeficiente de Variação493% Coeficiente Assimetria13,80 O 728 é um outlier?

8 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 8 Exemplo 2.1: Outlier Intervalo entre chegadas de pessoas nos caixas do supermercado (100 medidas). Tempos em minutos:

9 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 9 Outliers ou Valores Discrepantes Erro na coleta de dados. Este tipo de outlier é o mais comum, principalmente quando o levantamento de dados é feito por meio manual. Eventos Raros. Nada impede que situações totalmente atípicas ocorram na nossa coleta de dados. Alguns exemplos: Um dia de temperatura negativa no verão da cidade do Rio de Janeiro; Um tempo de execução de um operador ser muito curto em relação aos melhores desempenhos obtidos naquela tarefa; Um tempo de viagem de um caminhão de entregas na cidade de São Paulo, durante o horário de rush, ser muito menor do que fora deste horário.

10 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 10 Exemplo 2.1: Outlier (valor discrepante) Dados com o outlier sem o outlier Média 10,446,83 Mediana 55 Variância da amostra2.643,8143,60

11 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 11 Identificação de Outliers: Box-plot ABC Séries Valores mediana outlier Q 1 Q 3 Q 1 -1,5( Q 3 - Q 1 ) Q 3 +1,5( Q 3 - Q 1 )

12 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 12 Análise de Correlação Diagrama de dispersão dos tempos de atendimento do exemplo de supermercado, mostrando que não há correlação entre as observações da amostra.

13 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 13 Análise de Correlação Diagrama de dispersão de um exemplo hipotético em que existe correlação entre os dados que compõem a amostra.

14 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 14 Exemplo 2.1: Construção do Histograma 1. Definir o número de classes: O histograma é utilizado para identificar qual a distribuição a ser ajustada aos dados coletados ou é utilizado diretamente dentro do modelo de simulação. 2. Definir o tamanho do intervalo: 3. Construir a tabela de freqüências 4. Construir o histograma

15 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 15 Exemplo 2.1: Histograma

16 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 16 Exemplo 2.1: Inferência Qual o melhor modelo probabilístico ou distribuição estatística que pode representar a amostra coletada? x f ( x ) 1/λ x f ( x ) µ x f ( x ) abm x f ( x ) µ =1 σ µ σ =0,5 Exponencial? Normal? Triangular? Lognormal?

17 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 17 Testes de Aderência (não paramétricos) Testa a validade ou não da hipótese de aderência (ou hipótese nula) em confronto com a hipótese alternativa: H 0 : o modelo é adequado para representar a distribuição da população. H a : o modelo não é adequado para representar a distribuição da população. Se a um dado nível de significância (100)% rejeitarmos H 0, o modelo testado não é adequado para representar a distribuição da população. O nível de significância equivale à probabilidade de rejeitarmos a hipótese nula H 0, dado que ela está correta. Testes usuais: Qui quadrado Kolmogorov-Sminov

18 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 18 Teste do Qui-quadrado

19 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 19 P-value ValorCritério p-value<0,01 Evidência forte contra a hipótese de aderência 0,01 p-value<0,05 Evidência moderada contra a hipótese de aderência 0,05 p-value<0,10 Evidência potencial contra a hipótese de aderência 0,10 p-value Evidência fraca ou inexistente contra a hipótese de aderência Parâmetro usual nos softwares de estatística. Para o teste do qui- quadrado no Excel, utilizar: =DIST.QUI (valor de E; graus de liberdade)

20 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 20 Distribuições discretas: Binomial x f ( x )

21 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 21 Distribuições discretas: Poisson

22 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 22 Distribuições contínuas: Beta 00,51 x f ( x ) α =2 β =1 α =3 β =2 α =4 β α =2 β =3 α =1,5 β =5 α =6 β =2 α β =1

23 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 23 Distribuições contínuas: Erlang x f ( x ) λ =0,5 k= 3 λ =0,5 λ =0,2 k= 10

24 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 24 Distribuições contínuas: Exponencial x f ( x ) 1/ λ

25 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 25 Distribuições contínuas: Gama x f ( x ) α =0, α =1 α =2

26 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 26 Distribuições contínuas: Lognormal x f ( x ) µ =1 σ µ σ =0,5

27 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 27 Distribuições contínuas: Normal f ( x ) µ

28 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 28 Distribuições contínuas: Uniforme b a 1 / ( b-a ) x f ( x )

29 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 29 Distribuições contínuas: Triangular x f ( x ) abm

30 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 30 Distribuições contínuas: Weibull x f ( x ) α =0,5 β =1 α β α =2 β =1 α =3 β =1 α =3 β =2

31 Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 31 Modelagem de dados... Sem dados! DistribuiçãoParâmetrosCaracterísticasAplicabilidade ExponencialMédia Variância alta Cauda para direita Grande variabilidade dos valores Independência entre um valor e outro Muitos valores baixos e poucos valores altos Utilizada para representar o tempo entre chegadas sucessivas e o tempo entre falhas sucessivas Triangular Menor valor, moda e maior valor Simétrica ou não Quando se conhece ou se tem um bom chute sobre a moda (valor que mais ocorre), o menor valor e o maior valor que podem ocorrer Normal Média e desvio-padrão Simétrica Forma de sino Variabilidade controlada pelo desvio- padrão Quando a probabilidade de ocorrência de valores acima da média é a mesma que valores abaixo da média Quando o tempo de um processo pode ser considerado a soma de diversos tempos de sub-processos Processos manuais Uniforme Maior valor e menor valor Todos os valores no intervalo são igualmente prováveis de ocorrer Quando não se tem nenhuma informação sobre o processo ou apenas os valores limites (simulação do pior caso) Discreta Valores e probabilidade de ocorrência destes valores Apenas assume os valores fornecidos pelo analista Utilizada para a escolha de parâmetros das entidades (por exemplo: em uma certa loja, 30% dos clientes realizam suas compras no balcão e 70% nas prateleiras) Quando se conhecem apenas valores intermediários da distribuição ou a porcentagem de ocorrência de alguns valores discretos


Carregar ppt "Modelagem e Simulação de Eventos Discretos – Chwif e Medina (2006)Slide 1 Prof. Afonso C. Medina Prof. Leonardo Chwif Coleta e Modelagem dos Dados de Entrada."

Apresentações semelhantes


Anúncios Google